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Talk outline

Let us start with the classical Restless MABs

and

then explore possible generalizations to Weakly-coupled MDPs.



Restless MABs and Whittle index

Consider N > 1 controlled Markov chains (‘arms’)
{X i

n, n ≥ 0}, 1 ≤ i ≤ N , on a finite discrete state space S .

Control or action An is binary:

I Ai
n = 0 – the i -th arm is passive;

I Ai
n = 1 – the i -th arm is active.

System dynamics is defined by controlled transition kernels:

(k , j , a) ∈ S2 × {0, 1} 7→ pi(j |k , a) ∈ [0, 1].
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Restless MABs and Whittle index

Let R i(x , a) : S × A 7→ [0,∞), a = 0, resp. 1, denote
per stage reward for passive, resp. active, mode for arm i .

The objective is to maximize the expected discounted reward

Vπ∗(x
1, . . . , xN) = max

π
E

[
∞∑
t=0

N∑
i=1

γtR i
(
X i
t ,A

i
t

)
|X i

0 = x i

]
,

(1)
subject to the constraint, for prescribed M < N ,

N∑
i=1

Ai
t = M , ∀t (2)

I.e., at each time instant, only M arms are activated.
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Restless MABs and Whittle index

RMAB problem is provably hard, PSPACE-complete,
(Papadimitriou & Tsitsiklis, 1999).

Whittle’s ingenious observation was to replace the ‘hard
constraint’ (2) by the ‘time-averaged constraint’:

E

[
∞∑
t=0

N∑
i=1

γtAi
t

]
=

M

1− γ
, (3)

which renders the problem to the separable form and allows
one to use the technique of Lagrange multiplier.



Restless MABs and Whittle index

max
π

E

[
∞∑
t=0

N∑
i=1

γt
(
R i
(
X i
n,A

i
n

)
+ λ

(
1− Ai

n

))]
The Lagrange multiplier technique leads to the following DP
equation for each arm:

V i(x) = max
a∈{0,1}

(
a(r i(x , 1) + γ

∑
y

pi(y |x , 1)V i(y)) + (4)

(1− a)(r i(x , 0) + λ + γ
∑
y

pi(y |x , 0)V i(y))
)
,

with V i(x) the unknown variables.



Restless MABs and Whittle index

One can view the Lagrange multiplier λ as a ‘subsidy’ for
passivity.

RMAB is said to be indexable if the set of passive state
increases monotonically from the empty set to all of S as the
subsidy is increased from −∞ to ∞.

In this case, the Whittle index is defined to be the value λ∗(k)
of λ for which both active and passive modes are equally
preferred in the state k . That is,

λ∗(k)+r(k , 0)+
∑
y

p(y |k , 0)V (y) = r(k , 1)+
∑
y

p(y |k , 1)V (y).

(5)



Restless MABs and Whittle index

The Whittle index policy enjoys many good properties and
performs very well in numerous applications.

However, it requires the full model knowledge...
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Whittle index based Q-learning

Q-learning (Watkins, 1988) is the most prominent
reinforcement learning technique designed to mitigate model
uncertainty.

The technique is based on stochastic approximation solution of
the DP equation for Q-values:

Q i(x , a) = a

(
r i(x , 1) + γ

∑
y

pi(y |x , 1) max
b∈{0,1}

Q i(y , b)

)

+(1−a)

(
r i(s, 0) + λ + γ

∑
y

pi(y |x , 0) max
b∈{0,1}

Q i(y , b)

)
(6)



Whittle index based Q-learning

Fix stepsize sequence satisfying Robbins-Monro conditions:∑
n

α(n) =∞ and
∑
n

α(n)2 <∞.

For each x ∈ S , a ∈ {0, 1}, and the reference state k̂ ∈ S , do:

Qn+1(x , a; k̂) = Qn(x , a; k̂) + α(ν(x , a, n))×

I{Xn = x ,Un = a}
(

(1− a)(r(x , 0) + λn(k̂)) + ur(x , 1)

+ γ max
b∈U

Qn(Xn+1, b; k̂)− Qn(x , a; k̂)
)

(7)

where λn(k̂) is an estimate of the Whittle index for state k̂ ,
and where the ‘local clock’ for the pair (x , a) is given by

ν(x , a, n) =
∑n

m=0
I{Xm = x ,Zm = a}, x ∈ S , a ∈ {0, 1}.



Whittle index based Q-learning

Let us now Q-learn Whittle index!

Note that in the context of Q-learning, we need to solve (5) in
the form

Q(k̂ , 1)− Q(k̂ , 0) = 0, (8)

for λ = λ(k̂).



Whittle index based Q-learning

For the second ingredient, we can solve (8) by

λn+1(k̂) = λn(k̂) + β(n)
(
Qn(k̂ , 1; k̂)− Qn(k̂ , 0; k̂)

)
, (9)

where the stepsize sequence {β(n)} satisfies∑
n β(n) =∞,

∑
n β(n)2 <∞ and β(n) = o(α(n)).



Whittle index based Q-learning

Note that both off-policy as well as on-policy modes are
possible.

In the on-policy mode, the control actions at time n are
defined as follows:

I with probability (1− ε), we sort arms in the decreasing order
of the estimated Whittle index λn(X i

n) and render the top M
arms active;

I the remaining arms are passive;

I with probability ε, we render active M random arms, chosen
uniformly and independently;

I the remaining arms are passive.



Whittle index based Q-learning

Theorem Given that the problem satisfies the indexability
condition, iterations (7) and (9) converge respectively to
Q-values of the Whittle index policy, denoted by QW (x , a),
and to the Whittle indices λ(x), i.e.,

λn(x)→ λ(x) and Qn(x , a)→ QW (x , a)

a.s. ∀x ∈ S , a ∈ A as n→∞.

Proof main ingredient: It is based on two time scale
stochastic approximation and as often the case in stochastic
approaximation establishing the stability of the iterates is the
most tricky part.



Whittle index based Q-learning

Let us illustrate the algorithm by an example.

Example with circulant dynamics (Fu et al, 2019)

P0 =


1/2 0 0 1/2
1/2 1/2 0 0

0 1/2 1/2 0
0 0 1/2 1/2

 , and P1 = PT
0 .

The rewards do not depend on the action:
R(1) = −1, R(2) = 0, R(3) = 0, and R(4) = 1.

The exact values of the Whittle indices, calculated in
(Fu et al, 2019), are as follows:
λ(1) = −1/2, λ(2) = 1/2, λ(3) = 1, and λ(4) = −1.



Q-learning Whittle index

Let us consider a scenario with N = 100 identical arms, out of
which M = 20 are active at each time. We initialize our
algorithm with λ0(x) = 0, and Q(y , a; x) = R(y , a),
∀x , y ∈ S . We took ε = 0.1.

Figure: Estimated (solid lines) and exact (dash lines) Whittle
indices in the example with circulant dynamics.



Whittle index based Q-learning

What is a possible issue with Q-learning Whittle index?

Memory complexity.
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Whittle index based DQ-learning

To mitigate the issue with memory complexity, we suggest to
use Deep Q-learning instead of Tabular Q-learning.

Q-table is replaced with Q-network.

Specifically, we maintain the distinction between the visited
state x and the reference state k̂ of the Whittle index λ(k̂), so
that Q-values become

Q k̂
θ (x) =

[
Q k̂
θ (x , 0) Q k̂

θ (x , 1)
]
.

This makes the two state variables x and k̂ the inputs of NN,
while the outputs are the Q-values for both possible actions.



Whittle index based DQ-learning

DQN tunes the network weights by minimizing the expected
Bellman error:

E(θ, θ′) := E
[∥∥∥Qθ(x , a; k̂)− Qtarget(x , a; k̂)

∥∥∥2
]
,

with the target network given by

Qtarget(x , a; k̂) = (1− a)(r(x , 0) + λn(k̂)) + ar1(x , 1)

+γ max
b∈A

Q k̂
θ′(Xn+1, b; k̂).

The target network copies (θ → θ′) the parameter values of
the main network Qθ e.g. every 50 iterations.



Whittle index based DQ-learning

For each state k̂ ∈ S , we update Whittle index in a similar way
to the tabular implementation, i.e.:

λn+1(k̂) = λn(k̂) + β(n)
(
Q k̂
θ,n(k̂ , 1)− Q k̂

θ,n(k̂ , 0)
)
, (10)

where β(n) are time steps of the slow time scale.



Whittle index based DQ-learning

Let us compare the approaches on the circulant example with
N = 100 arms, out of which M = 70 need to be activated.

However, we increase the number of states to 50 and with only
the first and last states having non-zero rewards (−1,+1).



Weakly-coupled MDPs

One natural generalization is to go from binary actions to
more complex action spaces and non-linear costs.

This will change the constraint

N∑
i=1

Ai
t = M , Ai

t ∈ {0, 1},

to
N∑
i=1

c i(Ai
t) ≤ c̄ ,

with Ai
t belonging to a more complex space.



Weakly-coupled MDPs

If the action space is finite, one way to proceed would be to
try to extend the approach of Whittle index.

And indeed, some attempts have been made:

I (Weber, 2007)

I (Glazebrook, Hodge and Kirkbride, 2011)

I (Hodge and Glazebrook, 2015)

I (Killian et al, 2021)

I (Niño-Mora, 2022)

However, some restrictive technical assumptions are needed
and the derived Q-learning approach has shown numerical
instabilities.



Weakly-coupled MDPs

(Hawkins, 2003), with refinements by (Killian et al, 2021),
proposed Knapsack Lagrangian decomposition approach.

V (x) = max
a:
∑

i c(ai )≤c̄

{∑
i

r i(xi , ai) + γ
∑
y

p(y|x, a)V (y)

}

Use the Lagrange multiplier:

V (x) = max
a

{∑
i

r i(xi , ai) + λ

(
c̄ −

∑
i

c i(ai)

)

+γ
∑
y

p(y|x, a)V (y)

}



Weakly-coupled MDPs

Then, we ¿can? assume that

V (x) =
N∑
i=1

V i(xi)

which leads to the decomposition formulation

Q i(xi , ai , λ) = r i(xi , ai)−λc i(ai)+γ
∑
yi

p(yi |xi , ai) max
bi

Q i(yi , bi , λ),

λ∗ = arg min
λ≥0

{
N∑
i=1

max
ai

Q(xi , ai , λ) +
λc̄

1− γ

}
. (11)



Weakly-coupled MDPs

The decomposition formulation can be used to elaborate
online reinforcement learning method:

On the fast time scale, we learn Q-values e.g. by DQN
(Q-values approximated by NN with three inputs x , a and λ).

On the slow time scale, we solve easy, 1-dim, optimization
problem for λ∗.

Finally, we force the constraint satisfaction with the
Knapsack-like problem:

max
a

N∑
i=1

Q i(xi(t), ai , λ
∗)

N∑
i=1

c i(ai) ≤ c̄ .



Weakly-coupled MDPs

Let us consider numerical examples with continuous actions:

Type A: S = {0, 1}, a ∈ [0, 2], r(x , a) = x , c(a) = a.

P(a) =

[
0.02a2 − 0.09a + 0.8 −0.02a2 + 0.09a + 0.2

0.75 exp(−0.947a) 1− 0.75 exp(−0.947a)

]



Weakly-coupled MDPs

Type B: S = {0, 1}, a ∈ [0, 2], r(x , a) = x , c(a) = a.

P(a) =

[
0.95 exp(−2.235a) 1− 0.95 exp(−2.235a)

0.3347 exp(−1.609a) 1− 0.3347 exp(−1.609a)

]



Thank you!

Questions? k.avrachenkov@inria.fr
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