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Talk outline

Let us start with the classical Restless MABs
and

then explore possible generalizations to Weakly-coupled MDPs.
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Restless MABs and Whittle index

Consider N > 1 controlled Markov chains (‘arms’)
{Xi.n>0},1<i<N,on a finite discrete state space S.
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Restless MABs and Whittle index

Consider N > 1 controlled Markov chains (‘arms’)
{Xi.n>0},1<i<N,on a finite discrete state space S.

Control or action A, is binary:
» Al =0 - the i-th arm is passive;

» Al =1 - the i-th arm is active.
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Restless MABs and Whittle index

Consider N > 1 controlled Markov chains (‘arms’)
{Xi.n>0},1<i<N,on a finite discrete state space S.

Control or action A, is binary:
» Al =0 - the i-th arm is passive;

» Al =1 - the i-th arm is active.

System dynamics is defined by controlled transition kernels:

(k,j,a) € S? x {0,1} — p'(j|k, a) € [0,1].
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Restless MABs and Whittle index

Let Ri(x,a): S x A [0,00),a =0, resp. 1, denote
per stage reward for passive, resp. active, mode for arm /.
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Restless MABs and Whittle index

Let Ri(x,a): S x A [0,00),a =0, resp. 1, denote
per stage reward for passive, resp. active, mode for arm .

The objective is to maximize the expected discounted reward

Vi (x4, . = max £ [ZZ’th’ X[, A | X5 = x] :
t=0 i=1
(1)
subject to the constraint, for prescribed M < N,

N
> A=M, vt (2)
i=1

l.e., at each time instant, only M arms are activated. /z7576



Restless MABs and Whittle index

RMAB problem is provably hard, PSPACE-complete,
(Papadimitriou & Tsitsiklis, 1999).

Whittle's ingenious observation was to replace the ‘hard
constraint’ (2) by the ‘time-averaged constraint’:

E [i > yfA';] = % (3)

t=0 i=1

which renders the problem to the separable form and allows
one to use the technique of Lagrange multiplier.
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Restless MABs and Whittle index

maxE[Zny (R (X;, A}) +A(1—A;))]

t=0 i=1

The Lagrange multiplier technique leads to the following DP
equation for each arm:

Vi(x) = max (a(fi(X71)+’YZPi(Y|X=1)Vi(Y))+ (4)

ac{0,1}

(1= a)(r'(x,0) + A +7 Y P(yIx0)Vi(y)

y

with V/(x) the unknown variables.
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Restless MABs and Whittle index

One can view the Lagrange multiplier \ as a ‘subsidy’ for
passivity.

RMAB is said to be indexable if the set of passive state
increases monotonically from the empty set to all of S as the
subsidy is increased from —oo to oc.

In this case, the Whittle index is defined to be the value A*(k)
of A\ for which both active and passive modes are equally
preferred in the state k. That is,

N (K)+r(k, 00+ p(ylk,0)V(y) = r(k, 1)+>_ plylk, 1)V(y).

&’im(mé)mwm



Restless MABs and Whittle index

The Whittle index policy enjoys many good properties and
performs very well in numerous applications.
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Restless MABs and Whittle index

The Whittle index policy enjoys many good properties and
performs very well in numerous applications.

However, it requires the full model knowledge...
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Whittle index based Q-learning

Q-learning (Watkins, 1988) is the most prominent
reinforcement learning technique designed to mitigate model
uncertainty.

The technique is based on stochastic approximation solution of
the DP equation for Q-values:

Q'(x,a) = ( “(x,1) —|—72p y|x, 1) max}Q(y, ))

+(1-a) (fi(570)+>\+72P'(Y|X;0) max Q'(y, )) (6)

> be{0,1}
&iﬁ..m.,m,mmam



Whittle index based Q-learning

Fix stepsize sequence satisfying Robbins-Monro conditions:

Za(n) = 00 and Za(n)2 < 00.

n

For each x € S, a € {0,1}, and the reference state k € S, do:

Qi1 (x, a; k) = Qu(x, a; k) + a(v(x, a, n))x
X, = x, U, = a}((1 — a)(r(x, 0) + (k) + ur(x, 1)

+ v Te%){( Qn(Xn-i-la b; i%) - QH(X7 4 /2)) (7)

where \,(k) is an estimate of the Whittle index for state k,
and where the ‘local clock’ for the pair (x, a) is given by

V(Xa a, n) = Zn o /{Xm = X, Zm — a}7 X € 5’ ac Eﬁ iﬁEmImemam



Whittle index based Q-learning

Let us now Q-learn Whittle index!

Note that in the context of Q-learning, we need to solve (5) in
the form



Whittle index based Q-learning

For the second ingredient, we can solve (8) by

where the stepsize sequence {(3(n)} satisfies

>0 B(n) =00, 37, B(n)* < 00 and 5(n) = o(a(n)).
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Whittle index based Q-learning

Note that both off-policy as well as on-policy modes are
possible.

In the on-policy mode, the control actions at time n are
defined as follows:

> with probability (1 — €), we sort arms in the decreasing order
of the estimated Whittle index \,(X)) and render the top M
arms active;

P the remaining arms are passive;

» with probability ¢, we render active M random arms, chosen
uniformly and independently;

P the remaining arms are passive. .
%fnmmquu’nmménmam)
LA



Whittle index based Q-learning

Theorem Given that the problem satisfies the indexability
condition, iterations (7) and (9) converge respectively to
Q-values of the Whittle index policy, denoted by Qw(x, a),
and to the Whittle indices A(x), i.e.,

An(x) = A(x) and  Qn(x,a) — Qw(x,a)
as.Vxe€S,ae Aas n— oo.

Proof main ingredient: It is based on two time scale
stochastic approximation and as often the case in stochastic
approaximation establishing the stability of the iterates is the
most tricky part.

P d
s informatiques 7 mathématiques



Whittle index based Q-learning

Let us illustrate the algorithm by an example.
Example with circulant dynamics (Fu et al, 2019)

12 0 0 1/2
1/2 1/2 0 0
0 1/2 1/2 0
0 0 1/2 1/)2

Py = , and P, =Py.

The rewards do not depend on the action:
R(1)=-1, R(2) =0, R(3) =0, and R(4) = 1.

The exact values of the Whittle indices, calculated in
(Fu et al, 2019), are as follows:
A1) = —1/2, M(2) =1/2, A(3) =1, and \(4) = —1. é;imw'mmw



Q-learning Whittle index

Let us consider a scenario with N = 100 identical arms, out of
which M = 20 are active at each time. We initialize our
algorithm with A\o(x) =0, and Q(y, a;x) = R(y, a),

Vx,y € S. We took ¢ = 0.1.

A
= = ExactA(1)
P—)
- = Exact \(2)
2,3
~ = ExactA(3)
—_— )
— = Exact \(4)
;
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n

Figure: Estimated (solid lines) and exact (dash lines) Whitﬁw
indices in the example with circulant dynamics.
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Whittle index based Q-learning

What is a possible issue with Q-learning Whittle index?
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Whittle index based Q-learning

What is a possible issue with Q-learning Whittle index?

Memory complexity.
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Whittle index based DQ-learning

To mitigate the issue with memory complexity, we suggest to
use Deep Q-learning instead of Tabular Q-learning.

Q-table is replaced with Q-network.

Specifically, we maintain the distinction between the visited
state x and the reference state k of the Whittle index \(k), so
that Q-values become

Q(x) = |Qf(x.0) Qf(x.1)].

This makes the two state variables x and k the inputs of NN,
while the outputs are the Q-values for both possible actigns.
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Whittle index based DQ-learning

DQN tunes the network weights by minimizing the expected
Bellman error:
|

Qtarget(xa a, i%) = (1 - a)(r(X7 0) + )\”(i(\)) + arl(XJ 1)
k -k
+7y max Qg (Xnt1, b; k).

~

8(9,9/) = E |:HQ0(X, a, /2) - Qtarget(xa a, k)

with the target network given by

The target network copies (6 — 6) the parameter values of
the main network @y e.g. every 50 iterations. p
: informatiques P mathématiques



Whittle index based DQ-learning

For each state k € S, we update Whittle index in a similar way
to the tabular implementation, i.e.:

Aoia(k) = Mn(R) + B(n) (QF (k. 1) = Qf o(K,0)) . (20)

where 3(n) are time steps of the slow time scale.
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Whittle index based DQ-learning

Let us compare the approaches on the circulant example with
N = 100 arms, out of which M = 70 need to be activated.

However, we increase the number of states to 50 and with only
the first and last states having non-zero rewards (—1,+1).
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Average value function

~20 — qwi
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—— NeurWIN
_a0 ---- Oracle Whittle Index
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Weakly-coupled MDPs

One natural generalization is to go from binary actions to
more complex action spaces and non-linear costs.

This will change the constraint

N
d A =M, A e{01},
i=1

to
N

Y dA) <¢e

i=1

with Al belonging to a more complex space. .
: informatiques ¥ mathématiques



Weakly-coupled MDPs

If the action space is finite, one way to proceed would be to
try to extend the approach of Whittle index.
And indeed, some attempts have been made:
(Weber, 2007)
(Glazebrook, Hodge and Kirkbride, 2011)
(Hodge and Glazebrook, 2015)
(Killian et al, 2021)
(Nifio-Mora, 2022)

However, some restrictive technical assumptions are needed

and the derived Q-learning approach has shown numerical .o e
) Iy & app isia
instabilities.



Weakly-coupled MDPs

(Hawkins, 2003), with refinements by (Killian et al, 2021),
proposed Knapsack Lagrangian decomposition approach.

Vi) =  max {Z r'(x, ai) + Zy: p(ylx.a) V(y)}
Use the Lagrange multiplier:
V(x) = max {Z ri(xi, a;) + A (a - Z cf(a,-))
+y Zy: p(ylx, a)V(y)}
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Weakly-coupled MDPs

Then, we jcan? assume that

N

V(x) = Vi(x)

i=1

which leads to the decomposition formulation

Q'(xi,ai, A) = r'(x;, a;)— +WZ (vilxi; ai) max Q'(yi, by, A),

N _
* : AC
A= arg min { El max Q(xi, a;, A) + T 7} . (11)
: informatiques g7 mathématiques



Weakly-coupled MDPs

The decomposition formulation can be used to elaborate
online reinforcement learning method:

On the fast time scale, we learn Q-values e.g. by DQN
(Q-values approximated by NN with three inputs x, a and \).

On the slow time scale, we solve easy, 1-dim, optimization
problem for \*.

Finally, we force the constraint satisfaction with the
Knapsack-like problem:

N
mfxz Q’ ), ai, \")
i=1
N
>

i=1
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Weakly-coupled MDPs

Let us consider numerical examples with continuous actions:
Type A: S={0,1}, ac[0,2], r(x,a) =x, c(a) = a.

P(a) = 0.02a°> — 0.09a+ 0.8 —0.02a% + 0.09a + 0.2
| 0.75exp(—0.947a) 1 —0.75exp(—0.947a)
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Weakly-coupled MDPs

Type B: S={0,1}, a€[0,2], r(x,a) =x, c(a) = a.

p(ay— | 0.95exp(-2.235)  1-095exp(-22353)
| 0.3347exp(—1.609a) 1 — 0.3347 exp(—1.609a)

| —— OptLayer (DDPG with constraints)
~—— LPCA-DE (DE: Differential Evolution global optimisation)

15 LPCA-Greedy

- Random policy
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Thank you!

Questions? k.avrachenkov@inria.fr
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