On the Whittle index of Markov Modulated Restless Bandits

Urtzi AYESTA

Grenoble, Novembre 21 2023

Urtzi AYESTA On the Whittle index of Markov Modulated Restless Bandits

Resource allocation with time fluctuations

Motivating examples: cloud computing with varying arrivals, wireless downlink channels with changing quality, etc.

Control under changing conditions

The transition rates of the processes depend on an environment D(t) = d.

Control under changing conditions

The transition rates of the processes depend on an environment D(t) = d.

Goal: find control to optimise performance.

Control under changing conditions

The transition rates of the processes depend on an environment D(t) = d.

- **Problem 1**: unobservable environments.
- **Problem 2**: observable environments.

Goal: find control to optimise performance.

Outline

- MARB Problems
 - Classical multi-armed bandit
 - MARBP with environments
- Observable environments
 - Algorithm
 - Abandonment queue
 - Simulations
- Unobservable environment
 - Asymptotic optimality
 - Averaged Whittle's index

N arms or bandits, R < N can be played.

N arms or bandits, R < N can be played.

- State of bandit k: $M_k(t)$.
- Actions: $A_k(t) = 1$ (active) or $A_k(t) = 0$ (passive).
- Exponential rates $q_k(m'|m, a)$.

N arms or bandits, R < N can be played.

- State of bandit k: $M_k(t)$.
- Actions: $A_k(t) = 1$ (active) or $A_k(t) = 0$ (passive).
- Exponential rates q_k(m'|m, a). If q_k(m'|m, 0) > 0 : Restless model.

For policy φ , the expected cost is given by:

$$V^{N,\varphi} = \lim_{T\to\infty} \frac{1}{T} \mathbb{E}\left(\int_0^T \sum_{k=1}^N C(M_k^{\varphi}(t), A_k^{\varphi}(t)) dt\right),$$

where C(m, a) is unit cost in state *m* under action *a*.

For policy φ , the expected cost is given by:

$$V^{N,\varphi} = \lim_{T\to\infty} \frac{1}{T} \mathbb{E}\left(\int_0^T \sum_{k=1}^N C(M_k^{\varphi}(t), A_k^{\varphi}(t)) dt\right),$$

where C(m, a) is unit cost in state *m* under action *a*.

Objective: find policy that minimises $V^{N,\varphi}$, subject to

$$\sum_{k=1}^N A_k^{\varphi}(t) = R \quad \forall t.$$

Whittle ('88): relaxed constraint

$$\lim_{T\to\infty}\frac{1}{T}\mathbb{E}\left(\int_0^T\sum_{k=1}^N A_k^{\varphi}(t)dt\right)=R.$$

Whittle ('88): relaxed constraint

$$\lim_{T\to\infty}\frac{1}{T}\mathbb{E}\left(\int_0^T\sum_{k=1}^N A_k^{\varphi}(t)dt\right)=R.$$

Lagrangians Multipliers approach \implies find φ that minimises

$$\lim_{T\to\infty}\frac{1}{T}\mathbb{E}\left(\int_0^T\sum_{k=1}^N C(M_k^{\varphi}(t),A_k^{\varphi}(t))-W\sum_{k=1}^N A_k^{\varphi}(t)dt\right).$$

Whittle ('88): relaxed constraint

$$\lim_{T\to\infty}\frac{1}{T}\mathbb{E}\left(\int_0^T\sum_{k=1}^N A_k^{\varphi}(t)dt\right)=R.$$

Lagrangians Multipliers approach \implies find φ that minimises

$$\lim_{T\to\infty}\frac{1}{T}\mathbb{E}\left(\int_0^T\sum_{k=1}^N C(M_k^{\varphi}(t),A_k^{\varphi}(t))-W\sum_{k=1}^N A_k^{\varphi}(t)dt\right).$$

Reduces to solving N 1-dim subproblems

$$\lim_{T\to\infty}\frac{1}{T}\mathbb{E}\left(\int_0^T C(M_k^{\varphi}(t),A_k^{\varphi}(t))-WA_k^{\varphi}(t)dt\right).$$

Definition

A bandit is *indexable* if for each *m* there exists a W(m) such that

- If $W \leq W(m)$ active is optimal.
- If $W \ge W(m)$ passive is optimal.

W(m) is the Whittle index for state m.

Definition

A bandit is *indexable* if for each *m* there exists a W(m) such that

- If $W \leq W(m)$ active is optimal.
- If $W \ge W(m)$ passive is optimal.

W(m) is the Whittle index for state m.

• Relaxed problem \implies optimal solution.

Activate all bandits in state m such that $W \leq W(m)$.

Definition

A bandit is *indexable* if for each *m* there exists a W(m) such that

- If $W \leq W(m)$ active is optimal.
- If $W \ge W(m)$ passive is optimal.

W(m) is the Whittle index for state m.

- Relaxed problem ⇒ optimal solution.
 Activate all bandits in state m such that W < W(m).
- Original problem
 - with N fixed \implies heuristic with high performance.
 - with $N \to \infty \implies$ asymptotically optimal.

		Speed of the environment			
		Slow	Normal	Fast	
Unob.	Gen	Belief states	Belief States	Averaged	
				Whittle's index	
	Aban.			$\overline{\mu}_k/\overline{ heta}_k$	
Ob.	Gen.	$W_k^{(d)}(m)$	Algorithm	Algorithm	
	Aban.	$\mu_k^{(d)}/ heta_k^{(d)}$	WI	$\mu_k^{(d)}/\overline{ heta}_k$	

Bandit k has 2 processes:

 $M_k^{\varphi}(t)$ controllable process \implies controlled by decision maker.

 $D_k(t)$ environment process \implies exogenous and ergodic.

 $\phi_k(d)$ stationary measure of $D_k(t)$.

 $(D_k(t))_{k=1}^N$ may be correlated or not.

Bandit k has 2 processes:

 $M_k^{\varphi}(t)$ controllable process \implies controlled by decision maker.

 $D_k(t)$ environment process \implies exogenous and ergodic.

 $\phi_k(d)$ stationary measure of $D_k(t)$.

 $(D_k(t))_{k=1}^N$ may be correlated or not.

When $D_k(t) = d$,

- transition rates of controllable process : $q_k^{(d)}(m'|m,a)$.
- cost : $C_k^{(d)}(m, a)$.

The decision maker sees the current state of the bandit:

 $(M^{\varphi}(t),D(t))=(m,d).$

Definition (Threshold policies)

Threshold policy $\vec{n} = (n_1, n_2, ...)$ serves bandit iff current state (m, d) satisfies $m > n_d$.

We assume optimality of threshold policies, whose cost is given by

$$g^{\vec{n}}(W) := \sum_{d \in \mathcal{Z}} \sum_{m=0}^{\infty} C^{(d)}(m, a) \pi^{\vec{n}}(m, d) - W \sum_{d \in \mathcal{Z}} \sum_{m=0}^{n_d} \pi^{\vec{n}}(m, d).$$

$$g^{\vec{n}}(W) := \sum_{d \in \mathcal{Z}} \sum_{m=0}^{\infty} C^{(d)}(m, a) \pi^{\vec{n}}(m, d) - W \sum_{d \in \mathcal{Z}} \sum_{m=0}^{n_d} \pi^{\vec{n}}(m, d).$$

$$g^{\vec{n}}(W) := \sum_{d \in \mathcal{Z}} \sum_{m=0}^{\infty} C^{(d)}(m, a) \pi^{\vec{n}}(m, d) - W \sum_{d \in \mathcal{Z}} \sum_{m=0}^{n_d} \pi^{\vec{n}}(m, d).$$

$$g^{\vec{n}}(W) := \sum_{d \in \mathcal{Z}} \sum_{m=0}^{\infty} C^{(d)}(m, a) \pi^{\vec{n}}(m, d) - W \sum_{d \in \mathcal{Z}} \sum_{m=0}^{n_d} \pi^{\vec{n}}(m, d).$$

If $W \leq \hat{W}_0$, active is optimal in state (m, d) = (0, 1). If $W \geq \hat{W}_0$, passive is optimal in state (m, d) = (0, 1). $\implies W(0, 1) = \hat{W}_0$

$$g^{\vec{n}}(W) := \sum_{d \in \mathcal{Z}} \sum_{m=0}^{\infty} C^{(d)}(m, a) \pi^{\vec{n}}(m, d) - W \sum_{d \in \mathcal{Z}} \sum_{m=0}^{n_d} \pi^{\vec{n}}(m, d).$$

If $W \le \hat{W}_1$, active is optimal in state (m, d) = (3, 2). If $W \ge \hat{W}_1$, passive is optimal in state (m, d) = (3, 2). $\implies W(3, 2) = \hat{W}_1$

$$g^{\vec{n}}(W) := \sum_{d \in \mathcal{Z}} \sum_{m=0}^{\infty} C^{(d)}(m, a) \pi^{\vec{n}}(m, d) - W \sum_{d \in \mathcal{Z}} \sum_{m=0}^{n_d} \pi^{\vec{n}}(m, d).$$

If $W \le \hat{W}_1$, active is optimal in state (m, d) = (3, 2). If $W \ge \hat{W}_1$, passive is optimal in state (m, d) = (3, 2). $\implies W(3, 2) = \hat{W}_1$

Algorithm

$$\overline{W}(\vec{n}, \vec{n}') : \text{ crossing point between } g^{\vec{n}}(W) \text{ and } g^{\vec{n}'}(W).$$

$$\overline{W}(\vec{n}, \vec{n}') = \frac{\sum_{d \in \mathcal{Z}} \sum_{m=0}^{\infty} C(m, d, a) \pi^{\vec{n}}(m, d) - \sum_{d \in \mathcal{Z}} \sum_{m=0}^{\infty} C(m, d, a) \pi^{\vec{n}'}(m, d)}{\sum_{d \in \mathcal{Z}} \sum_{m=0}^{n_d} \pi^{\vec{n}}(m, d) - \sum_{d \in \mathcal{Z}} \sum_{m=0}^{\infty} \pi^{\vec{n}'}(m, d)}.$$

Algorithm

$$\overline{W}(\vec{n}, \vec{n}') : \text{ crossing point between } g^{\vec{n}}(W) \text{ and } g^{\vec{n}'}(W).$$

$$\overline{W}(\vec{n}, \vec{n}') = \frac{\sum_{d \in \mathbb{Z}} \sum_{m=0}^{\infty} C(m, d, a) \pi^{\vec{n}}(m, d) - \sum_{d \in \mathbb{Z}} \sum_{m=0}^{\infty} C(m, d, a) \pi^{\vec{n}'}(m, d)}{\sum_{d \in \mathbb{Z}} \sum_{m=0}^{n_d} \pi^{\vec{n}}(m, d) - \sum_{d \in \mathbb{Z}} \sum_{m=0}^{m_d} \pi^{\vec{n}'}(m, d)}$$

 $\vec{n}^{-1} := (-1, -1, \ldots)$. Then, for $j \ge 0$,

Algorithm

$$\overline{W}(\vec{n}, \vec{n}') : \text{ crossing point between } g^{\vec{n}}(W) \text{ and } g^{\vec{n}'}(W).$$

$$\overline{W}(\vec{n}, \vec{n}') = \frac{\sum_{d \in \mathcal{Z}} \sum_{m=0}^{\infty} C(m, d, a) \pi^{\vec{n}}(m, d) - \sum_{d \in \mathcal{Z}} \sum_{m=0}^{\infty} C(m, d, a) \pi^{\vec{n}'}(m, d)}{\sum_{d \in \mathcal{Z}} \sum_{m=0}^{n_d} \pi^{\vec{n}}(m, d) - \sum_{d \in \mathcal{Z}} \sum_{m=0}^{m_d} \pi^{\vec{n}'}(m, d)}.$$

 $\vec{n}^{-1} := (-1, -1, \ldots). \text{ Then, for } j \ge 0,$ **Step j** $\hat{W}_j = \inf_{n_d \ge n_d^{j-1} \ \forall d} \overline{W}(\vec{n}, \vec{n}^{j-1}).$ \vec{n}^j : minimiser. $W(m, d) := \hat{W}_j \text{ for } n_d^{j-1} < m \le n_d^j, \forall d.$ Go to step j + 1. Let the transitions of the environment be $\beta r^{dd'}$. Then it holds that:

$$\lim_{\beta\to 0}\pi^{\vec{n}}(m,d)=\phi(d)p^{n_d,(d)}(m)$$

Proposition

$$\lim_{\beta\to 0} W(m,d) = W^d(m)$$

Queue with abandonments

Assume $|\mathcal{Z}| = 2$ and $C^{(d)}(m, a) = cm$.

- $(m,d) \rightarrow (m+1,d)$ at rate $\lambda^{(d)}$.
- $(m,d) \rightarrow (m-1,d)$ at rate $m\theta^{(d)} + a\mu^{(d)}$.
- $(m,d) \rightarrow (m,3-d)$ at rate $r^{(d)}$.

Proposition

For each W, there exists an $\vec{n}(W) = (n_1(W), n_2(W))$ such that $\vec{n}(W)$ is an optimal solution

Truncate at L and smooth arrivals, an invoke S. Bhulai et al, QUESTA 2014

An auxiliary result:

$$\lambda^{(d)}\phi(d) + r^{(3-d)}\mathbb{E}\left(M^{\vec{n}}\mathbf{1}_{(D=3-d)}\right)$$
$$= \left(\theta^{(d)} + r^{(d)}\right)\mathbb{E}\left(M^{\vec{n}}\mathbf{1}_{(D=d)}\right) + \mu^{(d)}\sum_{m=n_d+1}^{\infty}\pi^{\vec{n}}(m,d),$$

$$W^{(d)} := c \mu^{(d)} \frac{\theta^{(3-d)} + r^{(1)} + r^{(2)}}{\theta^{(1)}\theta^{(2)} + r^{(1)}\theta^{(2)} + r^{(2)}\theta^{(1)}}.$$

Proposition (Whittle's index)

Assume $W^{(1)} < W^{(2)}$.

$$W(m,d) = egin{cases} \overline{W}((m-1,0),(m,0)) & ext{ for } d=1 \ W^{(2)} & ext{ for } d=2, m\geq 1. \end{cases}$$

Moreover, $W(m,1) \leq W^{(1)} \leq W^{(2)}$ for all m.

Proposition

Scale the rates of environment as $\beta r^{(d)}$. It holds that

$$\lim_{\beta\to 0} W(m,d) = c \frac{\mu^{(d)}}{\theta^{(d)}}, \quad \forall m, d.$$

$$\lim_{\beta\to\infty}W(m,d)=c\frac{\mu^{(2)}}{\overline{\theta}}\quad\text{for }\ d=2,$$

where $\overline{\theta} := \sum_{d=1}^{2} \phi(d) \theta^{(d)}$.

W(m, d): observable WI, $\overline{W}(m)$: averaged WI.

 $W_2^{(1)} << W_1^{(1)}$ and $W_1^{(2)} < W_2^{(1)}$

The **decision maker** does not see the current state of D(t).

The **decision maker** does not see the current state of D(t).

Transitions of bandits : $\frac{1}{N}q^{(d)}(m'|m,a)$. $N \to \infty \implies$ Both number of bandits and speed of the environment are scaled.

Definition

Policy φ^* asymptotically optimal: for any other policy φ ,

 $\liminf_{N\to\infty} V^{N,\varphi} \geq \liminf_{N\to\infty} V^{N,\varphi^*}.$

Objective: show asymptotic optimality of a set of policies.

Averaged Whittle's index policy

- Modulated process: parameters $C^{(d)}$ and $q^{(d)}$.
- Unmodulated process with averaged parameters:

 $\overline{C}(m,a) = \sum_d \phi(d) C^{(d)}(m,a)$

 $\overline{q}(m'|m,a) = \sum_{d} \phi(d)q^{(d)}(m'|m,a)$

Averaged Whittle's index policy

- Modulated process: parameters $C^{(d)}$ and $q^{(d)}$.
- Unmodulated process with averaged parameters:

 $\overline{C}(m,a) = \sum_d \phi(d) C^{(d)}(m,a)$

 $\overline{q}(m'|m,a) = \sum_d \phi(d)q^{(d)}(m'|m,a)$

Definition (Averaged Whittle Index)

 $\overline{W}(m)$ is the Whittle Index obtained for the restless bandit model with parameters \overline{C} and \overline{q} .

Theorem

 $\overline{W}(m)$ policy is included in the set of asymptotically optimal policies Φ^* defined before.

Averaged index: $\bar{W}_k(m) = c_k \frac{\bar{\theta}_k}{\bar{\mu}_k}$

Modulation ON,OFF Properties of belief states Non-preemptive:

Proposition

Serving the class *i* with $\max_k \frac{1}{E(S_i(1-p_i))} = \mu_i \frac{q_i}{p_i+q_i}$ maximizes the throughput with positive correlation.

Preemptive:

Proposition

Serving the class with $\max_k \mu_k \pi_k$ maximizes the throughput with positive correlation.

Characterization of performance loss due to unobservability.

		Speed of the environment			
		Slow	Normal	Fast	
Unob.	Gen	Belief states	Belief States	Averaged	
				Whittle's index	
	Aban.			$\overline{\mu}_k/\overline{ heta}_k$	
Ob.	Gen.	$W_k^{(d)}(m)$	Algorithm	Algorithm	
	Aban.	$\mu_k^{(d)}/ heta_k^{(d)}$	WI	$\mu_k^{(d)}/\overline{ heta}_k$	

- Observable environments
 - Common environment: Indices in slow and fast environments, asymptotic optimality etc.
- Unobservable environments
 - Calculation of WI on important classes of problems
- Stability of WI

Thank you