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Resource allocation with time fluctuations

Motivating examples: cloud computing with varying arrivals,
wireless downlink channels with changing quality, etc.
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Control under changing conditions

The transition rates of the
processes depend on an
environment D(t) = d .

Goal: find control to optimise performance.
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Control under changing conditions

The transition rates of the
processes depend on an
environment D(t) = d .

Problem 1: unobservable
environments.
Problem 2: observable
environments.

Goal: find control to optimise performance.
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MARB Problems
Classical multi-armed bandit
MARBP with environments

Observable environments
Algorithm
Abandonment queue
Simulations

Unobservable environment
Asymptotic optimality
Averaged Whittle’s index
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Classical multi-armed bandits

N arms or bandits, R < N can be played.
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Classical multi-armed bandits

N arms or bandits, R < N can be played.

State of bandit k: Mk(t).

Actions: Ak(t) = 1 (active) or
Ak(t) = 0 (passive).

Exponential rates qk(m′|m, a). If
qk(m′|m, 0) > 0 : restless model.
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Classical multi-armed bandits

For policy ϕ, the expected cost is given by:

VN,ϕ = lim
T→∞

1
T E

(∫ T

0

N∑
k=1

C(Mϕ
k (t),Aϕk (t))dt

)
,

where C(m, a) is unit cost in state m under action a.

Objective: find policy that minimises VN,ϕ, subject to

N∑
k=1

Aϕk (t) = R ∀t.
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Relaxed version

Whittle (’88): relaxed constraint

lim
T→∞

1
T E

(∫ T

0

N∑
k=1

Aϕk (t)dt
)

= R.

Lagrangians Multipliers approach =⇒ find ϕ that minimises

lim
T→∞

1
T E

(∫ T

0

N∑
k=1

C(Mϕ
k (t),Aϕk (t))−W

N∑
k=1

Aϕk (t)dt
)
.

Reduces to solving N 1-dim subproblems

lim
T→∞

1
T E

(∫ T

0
C(Mϕ

k (t),Aϕk (t))−WAϕk (t)dt
)
.
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Whittle’s Index

Definition
A bandit is indexable if for each m there exists a W (m) such that

If W ≤W (m) active is optimal.
If W ≥W (m) passive is optimal.

W (m) is the Whittle index for state m.

Relaxed problem =⇒ optimal solution.
Activate all bandits in state m such that W ≤W (m).
Original problem

with N fixed =⇒ heuristic with high performance.
with N →∞ =⇒ asymptotically optimal.
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Summary

Speed of the environment
Slow Normal Fast

Unob. Gen Belief states Belief States
Averaged

Whittle’s index
Aban. µk/θk

Ob. Gen. W (d)
k (m) Algorithm Algorithm

Aban. µ
(d)
k /θ

(d)
k WI µ

(d)
k /θk

Urtzi AYESTA On the Whittle index of Markov Modulated Restless Bandits



MARBP with environments

Bandit k has 2 processes:
Mϕ

k (t) controllable process =⇒ controlled by decision maker.
Dk(t) environment process =⇒ exogenous and ergodic.

φk(d) stationary measure of Dk(t).

(Dk(t))N
k=1 may be correlated or not.

When Dk(t) = d ,
transition rates of controllable process : q(d)

k (m′|m, a).

cost : C (d)
k (m, a).
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MARBP with observable environments

The decision maker sees the current state of the bandit:

(Mϕ(t),D(t)) = (m, d).

Definition (Threshold policies)
Threshold policy ~n = (n1, n2, . . .) serves bandit iff current state
(m, d) satisfies m > nd .

We assume optimality of threshold policies, whose cost is given by

g~n(W ) :=
∑
d∈Z

∞∑
m=0

C (d) (m, a)π~n(m, d)−W
∑
d∈Z

nd∑
m=0

π~n(m, d).
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Example

g~n(W ) :=
∑

d∈Z

∑∞
m=0

C(d) (m, a)π~n(m, d)−W
∑

d∈Z

∑nd
m=0

π~n(m, d).

Ŵ0 Ŵ1 Ŵ2

W

g
~ n
(W

)

If W ≤ Ŵ0, active is optimal in state (m, d) = (0, 1).
If W ≥ Ŵ0, passive is optimal in state (m, d) = (0, 1).

=⇒ W (0, 1) = Ŵ0
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Ŵ0 Ŵ1 Ŵ2
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If W ≥ Ŵ0, passive is optimal in state (m, d) = (0, 1).

=⇒ W (0, 1) = Ŵ0
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Ŵ0 Ŵ1 Ŵ2
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Algorithm
W (~n,~n′) : crossing point between g~n(W ) and g~n′(W ).

Ŵ0 Ŵ1 Ŵ2 Ŵ3

W

g
~ n
(W

)

 (− 1, − 1, . . )

 (n0
1 , n

0
2 , . . )

 (n1
1 , n

1
2 , . . )

 (n2
1 , n

2
2 , . . )

 (∞,∞, . . )

 g(W)

~n−1 := (−1,−1, . . .). Then, for j ≥ 0,
Step j Ŵj = infnd≥nj−1

d ∀d W (~n,~nj−1).
~nj : minimiser. W (m, d) := Ŵj for nj−1

d < m ≤ nj
d , ∀d .

Go to step j + 1.
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Slowly changing environment

Let the transitions of the environment be βrdd ′ . Then it holds that:

lim
β→0

π~n(m, d) = φ(d)pnd ,(d)(m)

Proposition

lim
β→0

W (m, d) = W d (m)
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Queue with abandonmentsDynamic control of stochastic and fluid resource-sharing systems 4 / 59

Abandonments in queues

Due to long waiting times customers may leave the system before service completion.

Examples of Application:
Call centers

Hospital triage

Video streaming

Surge in recent years

Special Issue in Queueing Systems 2013

www.burners.me

Assume |Z| = 2 and C (d)(m, a) = cm.
(m, d)→ (m + 1, d) at rate λ(d).
(m, d)→ (m − 1, d) at rate mθ(d) + aµ(d).
(m, d)→ (m, 3− d) at rate r (d).
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Threshold policies

Proposition
For each W, there exists an ~n(W ) = (n1(W ), n2(W )) such that
~n(W ) is an optimal solution

Truncate at L and smooth arrivals, an invoke S. Bhulai et al,
QUESTA 2014

An auxiliary result:

λ(d)φ(d) + r (3−d)E
(
M~n1(D=3−d)

)
=
(
θ(d) + r (d)

)
E
(
M~n1(D=d)

)
+ µ(d)

∞∑
m=nd +1

π~n(m, d),
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Indexability and Main results

W (d) := cµ(d) θ(3−d) + r (1) + r (2)

θ(1)θ(2) + r (1)θ(2) + r (2)θ(1) .

Proposition (Whittle’s index)

Assume W (1) <W (2).

W (m, d) =
{
W ((m − 1, 0), (m, 0)) for d = 1
W (2) for d = 2,m ≥ 1.

Moreover, W (m, 1) ≤W (1) ≤W (2) for all m.
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Slow and Fast environments

Proposition
Scale the rates of environment as βr (d).
It holds that

lim
β→0

W (m, d) = c µ
(d)

θ(d) , ∀m, d .

lim
β→∞

W (m, d) = c µ
(2)

θ
for d = 2,

where θ :=
∑2

d=1 φ(d)θ(d).
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Numerical evaluation

W (m, d): observable WI, W (m): averaged WI.
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Numerical evaluation

W (1)
2 <<W (1)

1 and W (2)
1 <W (1)

2
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MARBP with unobservable environments

The decision maker does not see the current state of D(t).

Transitions of bandits : 1
N q(d) (m′|m, a).

N →∞ =⇒ Both number of bandits and speed of the
environment are scaled.
Definition
Policy ϕ∗ asymptotically optimal: for any other policy ϕ,

lim inf
N→∞

VN,ϕ ≥ lim inf
N→∞

VN,ϕ∗ .

Objective: show asymptotic optimality of a set of policies.
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Averaged Whittle’s index policy

Modulated process: parameters C (d) and q(d).
Unmodulated process with averaged parameters:

C(m, a) =
∑

d φ(d)C (d)(m, a)

q (m′|m, a) =
∑

d φ(d)q(d) (m′|m, a)

Definition (Averaged Whittle Index)
W (m) is the Whittle Index obtained for the restless bandit model
with parameters C and q.

Theorem
W (m) policy is included in the set of asymptotically optimal
policies Φ∗ defined before.
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Performance of Averaged WI

Averaged index: W̄k(m) = ck
θ̄k
µ̄k
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Unobservable: finite speed

Modulation ON,OFF
Properties of belief states
Non-preemptive:

Proposition
Serving the class i with maxk

1
E(Si (1−pi )) = µi

qi
pi +qi

maximizes the
throughput with positive correlation.

Preemptive:

Proposition
Serving the class with maxk µkπk maximizes the throughput with
positive correlation.

Characterization of performance loss due to unobservability.
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Summary

Speed of the environment
Slow Normal Fast

Unob. Gen Belief states Belief States
Averaged

Whittle’s index
Aban. µk/θk

Ob. Gen. W (d)
k (m) Algorithm Algorithm

Aban. µ
(d)
k /θ

(d)
k WI µ

(d)
k /θk

Urtzi AYESTA On the Whittle index of Markov Modulated Restless Bandits



Conclusions and open problems

Observable environments
Common environment: Indices in slow and fast environments,
asymptotic optimality etc.

Unobservable environments
Calculation of WI on important classes of problems

Stability of WI
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Thank you
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