On the Whittle index of Markov Modulated Restless Bandits

Urtzi AYESTA

Grenoble, Novembre 21 2023

Urtzi AYESTA [On the Whittle index of Markov Modulated Restless Bandits](#page-0-0)

Resource allocation with time fluctuations

Motivating examples: cloud computing with varying arrivals, wireless downlink channels with changing quality, etc.

Control under changing conditions

The transition rates of the processes depend on an environment $D(t) = d$.

Control under changing conditions

The transition rates of the processes depend on an environment $D(t) = d$.

Goal: find control to optimise performance.

Control under changing conditions

The transition rates of the processes depend on an environment $D(t) = d$.

- **Problem 1**: unobservable environments.
- **Problem 2**: observable environments.

Goal: find control to optimise performance.

Outline

- **MARB Problems**
	- Classical multi-armed bandit
	- MARBP with environments
- Observable environments
	- Algorithm
	- Abandonment queue
	- **Simulations**
- Unobservable environment
	- Asymptotic optimality
	- Averaged Whittle's index

N arms or bandits, $R < N$ can be played.

N arms or bandits, R *<* N can be played.

- State of bandit $k: M_k(t)$.
- Actions: $A_k(t) = 1$ (active) or $A_k(t) = 0$ (passive).
- Exponential rates $q_k(m'|m, a)$.

N arms or bandits, R *<* N can be played.

- State of bandit k : $M_k(t)$.
- Actions: $A_k(t) = 1$ (active) or $A_k(t) = 0$ (passive).
- Exponential rates $q_k(m'|m, a)$. If $q_k(m'|m, 0) > 0$: Restless model.

For policy φ , the expected cost is given by:

$$
V^{N,\varphi} = \lim_{T\to\infty} \frac{1}{T} \mathbb{E}\left(\int_0^T \sum_{k=1}^N C(M_k^{\varphi}(t), A_k^{\varphi}(t))dt\right),
$$

where $C(m, a)$ is unit cost in state m under action a .

For policy *ϕ*, the expected cost is given by:

$$
V^{N,\varphi} = \lim_{T\to\infty} \frac{1}{T} \mathbb{E}\left(\int_0^T \sum_{k=1}^N C(M_k^{\varphi}(t), A_k^{\varphi}(t))dt\right),
$$

where $C(m, a)$ is unit cost in state m under action a .

Objective: find policy that minimises V ^N*,ϕ*, subject to

$$
\sum_{k=1}^N A_k^{\varphi}(t) = R \quad \forall t.
$$

Whittle ('88): relaxed constraint

$$
\lim_{T\to\infty}\frac{1}{T}\mathbb{E}\left(\int_0^T\sum_{k=1}^N A_k^{\varphi}(t)dt\right)=R.
$$

Whittle ('88): relaxed constraint

$$
\lim_{T\to\infty}\frac{1}{T}\mathbb{E}\left(\int_0^T\sum_{k=1}^N A_k^{\varphi}(t)dt\right)=R.
$$

Lagrangians Multipliers approach \implies find φ that minimises

$$
\lim_{T\to\infty}\frac{1}{T}\mathbb{E}\left(\int_0^T\sum_{k=1}^N C(M_k^{\varphi}(t),A_k^{\varphi}(t))-W\sum_{k=1}^N A_k^{\varphi}(t)dt\right).
$$

Whittle ('88): relaxed constraint

$$
\lim_{T\to\infty}\frac{1}{T}\mathbb{E}\left(\int_0^T\sum_{k=1}^N A_k^{\varphi}(t)dt\right)=R.
$$

Lagrangians Multipliers approach \implies find φ that minimises

$$
\lim_{T\to\infty}\frac{1}{T}\mathbb{E}\left(\int_0^T\sum_{k=1}^N C(M_k^{\varphi}(t),A_k^{\varphi}(t))-W\sum_{k=1}^N A_k^{\varphi}(t)dt\right).
$$

Reduces to solving N 1-dim subproblems

$$
\lim_{T\to\infty}\frac{1}{T}\mathbb{E}\left(\int_0^T C(M_k^{\varphi}(t),A_k^{\varphi}(t))-WA_k^{\varphi}(t)dt\right).
$$

Definition

A bandit is *indexable* if for each m there exists a $W(m)$ such that

- If $W \leq W(m)$ active is optimal.
- If $W \geq W(m)$ passive is optimal.

 $W(m)$ is the Whittle index for state m.

Definition

A bandit is *indexable* if for each m there exists a $W(m)$ such that

- If $W \leq W(m)$ active is optimal.
- If $W \geq W(m)$ passive is optimal.

 $W(m)$ is the Whittle index for state m.

• Relaxed problem \implies optimal solution. Activate all bandits in state m such that $W \leq W(m)$.

Definition

A bandit is *indexable* if for each m there exists a $W(m)$ such that

- If $W \leq W(m)$ active is optimal.
- If $W > W(m)$ passive is optimal.

 $W(m)$ is the Whittle index for state m.

- Relaxed problem \implies optimal solution. Activate all bandits in state m such that $W \leq W(m)$.
- **•** Original problem
	- with N fixed \implies heuristic with high performance.
	- with $N \to \infty \implies$ asymptotically optimal.

Bandit k **has 2 processes:**

 M_k^{φ} $\frac{\varphi}{k}(t)$ controllable process \implies controlled by decision maker.

 $D_k(t)$ environment process \implies exogenous and ergodic.

 $\phi_k(d)$ stationary measure of $D_k(t)$.

 $(D_k(t))_{k=1}^N$ may be correlated or not.

Bandit k **has 2 processes:**

 M_k^{φ} $\frac{\varphi}{k}(t)$ controllable process \implies controlled by decision maker.

 $D_k(t)$ environment process \implies exogenous and ergodic.

 $\phi_k(d)$ stationary measure of $D_k(t)$.

 $(D_k(t))_{k=1}^N$ may be correlated or not.

When $D_k(t) = d$,

- transition rates of controllable process : $q_k^{(d)}$ $\binom{d}{k}$ $(m'|m, a)$.
- $\cot : C_k^{(d)}$ $\binom{a}{k}(m, a)$.

The **decision maker** sees the current state of the bandit:

 $(M^{\varphi}(t), D(t)) = (m, d).$

Definition (Threshold policies)

Threshold policy $\vec{n} = (n_1, n_2, \ldots)$ serves bandit iff current state (m, d) satisfies $m > n_d$.

We assume optimality of threshold policies, whose cost is given by

$$
g^{\vec{n}}(W):=\sum_{d\in\mathcal{Z}}\sum_{m=0}^{\infty}C^{(d)}\left(m,a\right)\pi^{\vec{n}}(m,d)-W\sum_{d\in\mathcal{Z}}\sum_{m=0}^{n_d}\pi^{\vec{n}}(m,d).
$$

$$
g^{\vec{n}}(W) := \sum_{d \in \mathcal{Z}} \sum_{m=0}^{\infty} C^{(d)}(m, a) \pi^{\vec{n}}(m, d) - W \sum_{d \in \mathcal{Z}} \sum_{m=0}^{n_d} \pi^{\vec{n}}(m, d).
$$

g

$$
g^{\vec{n}}(W) := \sum_{d \in \mathcal{Z}} \sum_{m=0}^{\infty} C^{(d)}(m, a) \pi^{\vec{n}}(m, d) - W \sum_{d \in \mathcal{Z}} \sum_{m=0}^{n_d} \pi^{\vec{n}}(m, d).
$$

$$
g^{\vec{n}}(W) := \sum_{d \in \mathcal{Z}} \sum_{m=0}^{\infty} C^{(d)}(m, a) \pi^{\vec{n}}(m, d) - W \sum_{d \in \mathcal{Z}} \sum_{m=0}^{n_d} \pi^{\vec{n}}(m, d).
$$

If $W \leq \hat{W}_0$, active is optimal in state $(m,d) = (0,1).$ If $W \geq \hat{W}_0$, passive is optimal in state $(m,d) = (0,1).$

$$
\implies W(0,1)=\hat{W}_0
$$

$$
g^{\vec{n}}(W) := \sum_{d \in \mathcal{Z}} \sum_{m=0}^{\infty} C^{(d)}(m, a) \pi^{\vec{n}}(m, d) - W \sum_{d \in \mathcal{Z}} \sum_{m=0}^{n_d} \pi^{\vec{n}}(m, d).
$$

If $W \leq \hat{W}_1$, active is optimal in state $(m,d) = (3,2).$ If $W \ge \hat{W}_1$, passive is optimal in state $(m, d) = (3, 2)$.

$$
\implies W(3,2) = \hat{W}_1
$$

$$
g^{\vec{n}}(W) := \sum_{d \in \mathcal{Z}} \sum_{m=0}^{\infty} C^{(d)}(m, a) \pi^{\vec{n}}(m, d) - W \sum_{d \in \mathcal{Z}} \sum_{m=0}^{n_d} \pi^{\vec{n}}(m, d).
$$

If $W \leq \hat{W}_1$, active is optimal in state $(m,d) = (3,2).$ If $W \geq \hat{W}_1$, passive is optimal in state $(m, d) = (3, 2)$.

$$
\implies W(3,2) = \hat{W}_1
$$

Algorithm

$$
\overline{W}(\vec{n}, \vec{n}') : \text{crossing point between } g^{\vec{n}}(W) \text{ and } g^{\vec{n}'}(W).
$$
\n
$$
\overline{W}(\vec{n}, \vec{n}') = \frac{\sum_{d \in \mathcal{Z}} \sum_{m=0}^{\infty} C(m, d, a) \pi^{\vec{n}}(m, d) - \sum_{d \in \mathcal{Z}} \sum_{m=0}^{\infty} C(m, d, a) \pi^{\vec{n}'}(m, d)}{\sum_{d \in \mathcal{Z}} \sum_{m=0}^{n_d} \pi^{\vec{n}}(m, d) - \sum_{d \in \mathcal{Z}} \sum_{m=0}^{\infty} \pi^{\vec{n}'}(m, d)}
$$
\n
$$
\sum_{\substack{(n_1, n_2, \ldots, n_{n-1}, \ldots,
$$

Algorithm

W (*~*n*,~*n 0) : crossing point between g *~*n (W) and g *~*n 0 (W). W^ ⁰ W^ ¹ W^ ² W^ 3 W g~n(W) (¡ 1;¡ 1; : :) (n 0 1 ; n 0 2 ; : :) (n 1 1 ; n 1 2 ; : :) (n 2 1 ; n 2 2 ; : :) (1; 1; : :) g(W)

 $\vec{n}^{-1} := (-1, -1, \ldots)$. Then, for $j \ge 0$,

Algorithm

W (*~*n*,~*n 0) : crossing point between g *~*n (W) and g *~*n 0 (W). W^ ⁰ W^ ¹ W^ ² W^ 3 W g~n(W) (¡ 1;¡ 1; : :) (n 0 1 ; n 0 2 ; : :) (n 1 1 ; n 1 2 ; : :) (n 2 1 ; n 2 2 ; : :) (1; 1; : :) g(W)

 $\vec{n}^{-1} := (-1, -1, \ldots)$. Then, for $j \ge 0$, Step j $\hat{W}_j = \inf_{n_d \ge n_d^{j-1}} \sqrt[d]{W(\vec{n}, \vec{n}^{j-1})}.$ \vec{n}^j : minimiser. $W(m, d) := \hat{W}_j$ for $n_d^{j-1} < m \leq n_d^j$, $\forall d$. Go to step $j + 1$.

Let the transitions of the environment be $\beta r^{dd'}$. Then it holds that:

$$
\lim_{\beta \to 0} \pi^{\vec{n}}(m, d) = \phi(d) p^{n_d, (d)}(m)
$$

Proposition

$$
\lim_{\beta\to 0} W(m,d) = W^d(m)
$$

$\mathsf Q$ ueue with abandonments \Box systems \Box fluid resource-sharing systems \Box

Assume $|\mathcal{Z}| = 2$ and $C^{(d)}(m, a) = cm$.

- $(m, d) \rightarrow (m + 1, d)$ at rate $\lambda^{(d)}$. Call centers
- $(m, d) \rightarrow (m 1, d)$ at rate $m\theta^{(d)} + a\mu^{(d)}$.
- $(m, d) \rightarrow (m, 3 d)$ at rate $r^(d)$.

Proposition

For each W, there exists an $\vec{n}(W) = (n_1(W), n_2(W))$ such that $\vec{n}(W)$ is an optimal solution

Truncate at L and smooth arrivals, an invoke S. Bhulai et al, QUESTA 2014

An auxiliary result:

$$
\lambda^{(d)}\phi(d) + r^{(3-d)}\mathbb{E}\left(M^{\vec{n}}\mathbf{1}_{(D=3-d)}\right)
$$

= $\left(\theta^{(d)} + r^{(d)}\right)\mathbb{E}\left(M^{\vec{n}}\mathbf{1}_{(D=d)}\right) + \mu^{(d)}\sum_{m=n_d+1}^{\infty} \pi^{\vec{n}}(m,d),$

$$
W^{(d)} := c\mu^{(d)}\frac{\theta^{(3-d)} + r^{(1)} + r^{(2)}}{\theta^{(1)}\theta^{(2)} + r^{(1)}\theta^{(2)} + r^{(2)}\theta^{(1)}}.
$$

Proposition (Whittle's index)

Assume $W^{(1)} < W^{(2)}$.

$$
W(m,d) = \begin{cases} \overline{W}((m-1,0),(m,0)) & \text{for } d=1\\ W^{(2)} & \text{for } d=2, m \geq 1. \end{cases}
$$

Moreover, $W(m,1) \leq W^{(1)} \leq W^{(2)}$ for all m.

Proposition

Scale the rates of environment as $\beta r^{(d)}$. It holds that \sqrt{a}

$$
\lim_{\beta\to 0} W(m,d)=c\frac{\mu^{(d)}}{\theta^{(d)}}, \quad \forall m, d.
$$

$$
\lim_{\beta \to \infty} W(m, d) = c \frac{\mu^{(2)}}{\overline{\theta}} \quad \text{for} \quad d = 2,
$$

where $\overline{\theta} := \sum_{d=1}^2 \phi(d) \theta^{(d)}.$

 $W(m, d)$: observable WI, $\overline{W}(m)$: averaged WI.

Numerical evaluation

$$
W_2^{(1)}<
$$

The **decision maker** does not see the current state of $D(t)$.

The **decision maker** does not see the current state of $D(t)$.

Transitions of bandits : $\frac{1}{N}q^{(d)}(m'|m,a)$. $N \rightarrow \infty \implies$ Both number of bandits and speed of the **environment are scaled**.

Definition

Policy φ^* asymptotically optimal: for any other policy φ ,

 $\liminf_{N\to\infty} V^{N,\varphi} \ge \liminf_{N\to\infty} V^{N,\varphi^*}.$

Objective: show asymptotic optimality of a set of policies.

Averaged Whittle's index policy

- Modulated process: parameters $C^{(d)}$ and $q^{(d)}$.
- Unmodulated process with averaged parameters:

 $\overline{C}(m, a) = \sum_{d} \phi(d) C^{(d)}(m, a)$

 $\overline{q}(m'|m,a) = \sum_{d} \phi(d)q^{(d)}(m'|m,a)$

Averaged Whittle's index policy

- Modulated process: parameters $C^{(d)}$ and $q^{(d)}$.
- Unmodulated process with averaged parameters:

 $\overline{C}(m, a) = \sum_{d} \phi(d) C^{(d)}(m, a)$

 $\overline{q}(m'|m,a) = \sum_{d} \phi(d)q^{(d)}(m'|m,a)$

Definition (Averaged Whittle Index)

 $\overline{W}(m)$ is the Whittle Index obtained for the restless bandit model with parameters \overline{C} and \overline{q} .

Theorem

 $W(m)$ policy is included in the set of asymptotically optimal policies $Φ^*$ defined before.

 λ veraged index: $\bar{W}_k(m) = c_k \frac{\bar{\theta}_k}{\bar{\mu}_k}$

Modulation ON,OFF Properties of belief states Non-preemptive:

Proposition

Serving the class *i* with max_k $\frac{1}{E(S_i(1-p_i))} = \mu_i \frac{q_i}{p_i+1}$ $\frac{q_i}{p_i+q_i}$ maximizes the throughput with positive correlation.

Preemptive:

Proposition

Serving the class with max_k $\mu_k \pi_k$ maximizes the throughput with positive correlation.

Characterization of performance loss due to unobservability.

- Observable environments
	- Common environment: Indices in slow and fast environments, asymptotic optimality etc.
- **Unobservable environments**
	- Calculation of WI on important classes of problems
- Stability of WI

Thank you