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Multi-Armed Bandits

Sequential decision maker: {At : t ≥ 1}

Pill a?
Pill b?

Mathematical model:
▶ Actions A, reward distributions Fa with means µa;
▶ At time t, pick At and observe Rt ∼ FAt ;
▶ Independance assumptions.
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A performance metric: the regret

Optimal and suboptimal actions.

▶ Optimal arm achieving µ∗ := maxa µa;
▶ Optimal offline performance: Tµ∗.

Principle of regret.
Compare my performance to optimal offline performance:

Reg(T ) := Tµ∗ −
∑T

t=1
µAt .

( Remark:
∑T

t=1 µ(At) is a conditional expectation of
∑T

t=1 Rt. )
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Achievable Asymptotical Regret

Assumption. Rewards are Bernoulli, i.e., Fa ≡ B(µa).

Theorem (Lai and Robbins, 1985)
If an algorithm satisfies EF[Reg(T )] = o(T ϵ) for all F and ϵ > 0,
then:

∀F, lim inf
T→∞

EF[Reg(T )]

log(T )
≥

∑
a:µa<µ∗

µ∗ − µa

kl(µa, µ∗)

where kl(p, q) := p log(pq ) + (1− p) log(1−p
1−q ).

Many algorithms achieve this lower bound! Thompson
Sampling, KL-UCB, IMED, MED, subsampling algorithms, and
more.
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Two Performance Portraits

▶ Fix F = (B(0.85),B(0.8));
▶ Run once every algorithm.
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▶ Two families of regret trajectories.

Can we explain this?
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The Sliding Regret

Definition. The sliding regret is

SliReg(T ) := lim sup
t→∞

(
Tµ∗ −

∑T−1

i=0
µAt+i

)

Index policies compute at time t, out of observations, an index
Ia(t) for every arm, and pick the arm maximizing the index.

Take away:

▶ Deterministic-index policies have linear sliding regret.
▶ Random-index policies have sub-linear sliding regret.

( of course reality is subtler )
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Examples of Index Policies

▶ Number of visits, Na(t) :=
∑t−1

i=1 1 (At = a)

▶ Number of successes, Sa(t) :=
∑t−1

i=1 1 (At = a)Rt

▶ Empirical means, µ̂a(t) := Sa(t)/Na(t)

UCB (optimism)

Use the deterministic index:

Ia(t) := µ̂a(t) +
√

2 log(t)
Na(t)

Worst SliReg(T ) = (µ1−µ2)T ,

Thompson Sampling

Use the randomized index:

Ia(t) ∼ Beta(1+Sa(t), 1+Ua(t))

where Ua(t) := Na(t)− Sa(t).

Optimal SliReg(T ) = µ1 − µ2.
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Why is the Sliding Regret of UCB Linear?

▶ This has to do with how UCB behaves at infinity.
▶ UCB index: Ia(t) := µ̂a(t) +

√
2 log(t)
Na(t)

.

arm 1

arm 2

I1(t)

I2(t)

µa µ̂a(t)

▶ Solving I2(t) = µ1, we get: N2(t) ≈ 2 log(t)
(µ1−µ2)2

when t → ∞.
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Why is the Sliding Regret of UCB Linear?

▶ Ia(t) := µ̂a(t) +
√

2 log(t)
Na(t)

and Na(t) ≈ 2 log(t)
(µ∗−µa)2

.

▶ Scenario: Say At = a ̸= a∗ and Rt = 1.

Ia(t+ 1) = Ia(t) + d (µ̂a(t)) + d

(√
2 log(t)
Na(t)

)
≈ Ia(t) +

1− µa

Na(t)
− µ∗ − µa

2Na(t)
= Ia(t) +

1− µ∗−µa

2

Na(t)
.

▶ Conclusion: Ia increases by Θ( 1
Na(t)

), Ia∗ increases by O(1t ).

So a will be picked in the next round!
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Why is the Sliding Regret of UCB Linear?

Conlusion: When t ≫ T ,

PUCB (∀i < T : At+i = a | At = a) ≥
∏T−1

i=0
P(Rt+i = 1 | At+i = a)

= µT
a .

Remark: This is not the case for Thompson Sampling, for which

PTS (∀i < T : At+i = a | At = a) −−−→
t→∞

0.
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A General Principle

Say that the learner has picked a suboptimal arm recently, and
that it gave unexpectedly good rewards. Does the learner
significatively increase the probability of picking it?

If yes, then high sliding regret.
If no, then small sliding regret.

⇒ Small sliding regret is about a robustness to local histories.
⇒ KL-UCB, IMED, UCB, UCB-V, MOSS have provably linear
sliding regret.
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Is Small Sliding Regret Useful?

⇒ Optimal regret does not imply sublinear sliding regret;

⇒ Sliding regret is sometimes a secondary issue;

⇒ Sublinear sliding regret is sometimes important, and
measures how predictable is suboptimal play over a single run.
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Thank you!


	How are multi-armed bandits learnt?

