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Background: Refined Mean Field Approximation
Mean field approximation: E

[
∥X(N) − x∗∥2] = O(1/N)

⇒ E
[∥∥X(N) − x∗∥∥] = O(1/

√
N)

However...∥∥∥E [
X(N)

]
− x∗

∥∥∥ ≤ E
[∥∥∥X(N) − x∗

∥∥∥] = O(1/
√

N)

Smoother Drift for More Precise Mean Field Approximations
a If the drift of the mean field system is smooth enough, then

E
[
X(N)

]
= x∗ +

C1

N
+

C2

N2 + · · ·+ Ck

Nk + . . .

a
Gast, “Expected Values Estimated via Mean-Field Approximation are 1/N-Accurate”; Gast and Van Houdt, “A

Refined Mean Field Approximation”

♠ Can we incorporate control into this framework?
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Restless Bandit: A Single Arm
A single arm of the RB is a Markov decision process consists of:

• state = {1 . . .S}⇝ notation s

• action = {pull, not pull}⇝ notation a

• two transition Probability matrices corresponding to the two
actions⇝ notation P with entries Pa

ss′

• reward⇝ notation r with entries r(s,a)

Maximize the total expected reward on the single arm over a finite horizon T

max
Π : s → a

EΠ

[ T∑
t=1

r(s(t),a(t))
]

(1a)

s.t. P (s(t + 1) = s′ | s(t) = s,a(t) = a) = Pa
ss′ , (1b)

a(t) ∈ {0,1}, (1c)
s(1) is given (1d)
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Restless Bandit: N Arms
Consider a collection of N such arms, each evolves independently:

Maximize the total expected reward over these N arms

max
Π : s → a

EΠ

[ N∑
n=1

T∑
t=1

r(sn(t),an(t))
]

(2a)

s.t. P (sn(t + 1) = s′
n | sn(t) = s,an(t) = a) = Pa

ss′ , (2b)

a(t) ∈ {0,1}N , (2c)
s(1) is given (2d)

Vector notation: a(t) = (a1(t), . . . ,aN(t)) and s(t) = (s1(t), . . . , sN(t))
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Restless Bandit: N Arms with Constraint

Constraint: exactly αN arms be pulled at each time (0 < α < 1)

Restless Bandit Problem Formulation

max
Π : s → a

EΠ

[ N∑
n=1

T∑
t=1

r(sn(t),an(t))
]

(3a)

s.t. P
(
sn(t + 1) = s′

n | sn(t) = s,an(t) = a
)
= Pa

ss′ ,
(3b)

a(t) · 1⊤ = αN

, a(t) ∈ {0,1}N , (3c)
s(1) is given (3d)

♣ Adding a single constraint renders the problem extremely
hard to solve exactly 1

1
Papadimitriou and Tsitsiklis, “The Complexity Of Optimal Queuing Network Control”
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Adding More Constraints and More Actions: WCMDP

Network Routing to Maximize Utility
• Routing three types of arrival flows from Source to Destination via the three paths
• A link may be occupied by multiple paths and has a maximal capacity ⇒ multiple

constraints appear naturally

Link 1

Link 2

Link
3

Link 4

Link 5

Source Destination

Path 1

Path 2

Path 3

Arrivals

Reje
cti

on
s

♣ Can be modeled into a weakly coupled Markov decision process
(WCMDP) 2 3

2
Adelman and Mersereau, “Relaxations of weakly coupled stochastic dynamic programs”

3
See Yan and Reiffers-Masson, “Certainty Equivalence Control-Based Heuristics in Multi-Stage Convex

Stochastic Optimization Problems” for a study of this example
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Restless Bandit: Occupation Measure Formulation
X(N) ∈ RS: the s-th coordinate X (N)

s is the fraction of arms in state s
U(N) ∈ RS: ... U(N)

s is the fraction of arms in state s to be pulled

Occupation Measure Formulation

max
Π : X(N) → U(N)

EΠ

[ T∑
t=1

r ·
(

X(N)(t)− U(N)(t),U(N)(t)
) ]

(4a)

s.t.

Markov evolution of each arm given U(N)(t)

, (4b)

U(N)(t) · 1⊤ = α, 0 ≤ U(N)(t) ≤ X(N)(t), (4c)

X(N)(1) is given (4d)

Π consists of T maps πt : X(N)(t) 7→ U(N)(t) that are

• Ft -measurable

• feasible: U(N)(t) ∈ U(X(N)(t)) :=
{

u | u · 1⊤ = α, 0 ≤ u ≤ X(N)(t)
}
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Restless Bandit: Markov Evolution

Example (N = 5, S = 2)
At t = 1, we have 2 arms in state 1⃝ and 3 arms in state 2⃝, so that
X(N)(1) = ( 2

5 ,
3
5 ).

Suppose that U(N)(1) = ( 1
5 ,

2
5 ). And

P0 =

(
.2 .8
.4 .6

)
P1 =

(
.5 .5
.7 .3

)

The law of X(N)(2), given X(N)(1) and U(N)(1), is a sum of 5
independent categorical distributions, divided by 5:

X(N)(2)
∣∣ X(N)(1),U(N)(1) ∼

1
5

(
Categorical(.2, .8) + Categorical(.5, .5) + Categorical(.7, .3) + Categorical(.7, .3)︸ ︷︷ ︸

Multinomial(2; .7,.3)

+ Categorical(.4, .6)
)
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Restless Bandit: Markov Evolution

Markov Evolution of the Occupation Measure
a Given X(N)(t) and U(N)(t), we can write:

X(N)(t + 1) = ϕ(X(N)(t),U(N)(t)) + E(X(N)(t),U(N)(t))

where ϕ(·, ·) is a deterministic affine function, and E(·, ·) is a random vector
satisfying

E
[
E(X(N)(t),U(N)(t)) | X(N)(t),U(N)(t)

]
= 0

var
[
E(X(N)(t),U(N)(t)) | X(N)(t),U(N)(t)

]
= O(

1
N
)

a
Gast, Gaujal, and Yan, “The LP-update policy for weakly coupled Markov decision processes”, Lemma 1

♢ For large N, the occupation measure’s evolution behaves almost
like a deterministic system
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Restless Bandit: Occupation Measure Formulation
X(N) ∈ RS : the s-th coordinate X (N)

s is the fraction of arms in state s
U(N) ∈ RS : the s-th coordinate U(N)

s is the fraction of arms in state s to be pulled

Occupation Measure Formulation

max
Π : X(N) → U(N)

EΠ

[ T∑
t=1

r ·
(

X(N)(t)− U(N)(t),U(N)(t)
) ]

(5a)

s.t.

X(N)(t + 1) = ϕ(X(N)(t),U(N)(t))

+ E(X(N)(t),U(N)(t))

, (5b)

U(N)(t) · 1⊤ = α, 0 ≤ U(N)(t) ≤ X(N)(t), (5c)

X(N)(1) is given (5d)

ϕ(·, ·): deterministic (affine) drift
E(·, ·): density dependent noise

♣ What if the E(·, ·) terms were not there?
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Multi-Stage Stochastic Optimization 5

Let h, ϕ be affine, f be concave and g be convex C2-smooth functions
of appropriate dimensions, and E be density dependent noise 4

A Multi-Stage Stochastic Optimization Problem

Vopt(X(1)) = max
Π : X → U

EΠ

[ T∑
t=1

f (X(t),U(t))
]

(6a)

s.t. X(t + 1) = ϕ(X(t),U(t)) + E(X(t),U(t)),
(6b)

g(X(t),U(t)) ≤ 0, h(X(t),U(t)) = 0, (6c)
X(1) is given (6d)

where Π consists of T feasible and Ft -measurable maps
πt : X(t) 7→ U(t)

4
We drop the dependence on N in the vectors.

5
Shapiro, Dentcheva, and Ruszczynski, Lectures on stochastic programming: modeling and theory, Chapter 3
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The Certainty Equivalence Problem

Certainty Equivalence Control (CEC) 6: replace all the uncertainties
by their nominal values

max
Π : X → U

EΠ

[ T∑
t=1

f (X(t),U(t))
]
:= Vopt(X(1))

s.t. X(t + 1) = ϕ(X(t),U(t)) + E(X(t),U(t)),

g(X(t),U(t)) ≤ 0, h(X(t),U(t)) = 0,
X(1) is given

max
u[1,T ]

[ T∑
t=1

f (x(t),u(t))
]
:= Vrel(X(1))

s.t. x(t + 1) = ϕ(x(t),u(t)),
g(x(t),u(t)) ≤ 0, h(x(t),u(t)) = 0,
x(1) = X(1) is given

Observations:
• The r.h.s. is simply a deterministic and convex mathematical program
• Were it be that E(·, ·) are identically zero, the two problems are identical
• When E(·, ·) are ”small”, the solutions to the two problems should be

”close”
• Vopt(X(1)) ≤ Vrel(X(1)) because of the convexity assumptions

6
Bertsekas, Dynamic programming and optimal control: Volume I, Chapter 6
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The Certainty Equivalence Problem

Certainty Equivalence Control (CEC) 6: replace all the uncertainties
by their nominal values

max
Π : X → U

EΠ

[ T∑
t=1
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:= Vopt(X(1))
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The CEC: Intuition of Why It Works

Let u∗(1), . . . ,u∗(T ) be an optimal solution to the deterministic problem
⇝ x∗(1), . . . , x∗(T )

Suppose somehow we have constructed a feasible policy πt : x(t) 7→ U(x(t))
for all 1 ≤ t ≤ T 7 such that

• πt(x∗(t)) = u∗(t)
• πt(·) are well-behaved in a neighbourhood of x∗(t) (i.e. smooth enough)

Then:
x∗(1) = X(1)
x∗(2) = ϕ(x∗(1),u∗(1)) = ϕ(x∗(1), π1(x∗(1)))
X(2) = ϕ(X(1), π1(X(1))) + E(X(1), π1(X(1))) ≈ ϕ(x∗(1), π1(x∗(1))) = x∗(2)

Because E is small and π1(·) is smooth

7Recall U(x) = {u | g(x,u) ≤ 0, h(x,u) = 0}
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The CEC: Intuition of Why It Works

More generally, for time-step t :

x∗(t) ≈ X(t)
x∗(t + 1) = ϕ(x∗(t),u∗(t)) = ϕ(x∗(t), πt(x∗(t)))
X(t + 1) = ϕ(X(t), πt(X(t))) + E(X(t), πt(X(t)))

⇒ X(t + 1) ≈ ϕ(x∗(t), πt(x∗(t))) = x∗(t + 1) Because E is small
and πt(·) is smooth

Since
VΠ(X(1)) = EΠ

[∑T
t=1 f (X(t), πt(X(t)))

]
Vrel(X(1)) =

∑T
t=1 f (x∗(t), πt(x∗(t)))

We deduce that VΠ(X(1)) ≈ Vrel(X(1))

As VΠ(X(1)) ≤ Vopt(X(1)) ≤ Vrel(X(1))︸ ︷︷ ︸
because of convexity

⇒ VΠ(X(1)) ≈ Vopt(X(1))
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Recapitulation (I)
max

Π : X → U
EΠ

[ T∑
t=1

f (X(t),U(t))
]
:= Vopt(X(1))

s.t. X(t + 1) = ϕ(X(t),U(t)) + E(X(t),U(t)),

g(X(t),U(t)) ≤ 0, h(X(t),U(t)) = 0,
X(1) is given

max
u[1,T ]

[ T∑
t=1

f (x(t),u(t))
]
:= Vrel(X(1))

s.t. x(t + 1) = ϕ(x(t),u(t)),
g(x(t),u(t)) ≤ 0, h(x(t),u(t)) = 0,
x(1) = X(1) is given

Meta Theorem: Local Regularity determines Convergence Rate

a Suppose the density dependent noise E is such that var [E] ≤ ε b, with ε > 0
sufficiently small. Let u∗(t), x∗(t), 1 ≤ t ≤ T be an optimal solution to the r.h.s. above.
For a feasible c policy Π and all t , if πt in a neighbourhood of x∗(t):

1. is Lipschitz-continuous ⇒ Vopt − VΠ ≤ C1 ·
√
ε

2. is C2-smooth ⇒ Vopt − VΠ ≤ C2 · ε
3. is affine ⇒ Vopt − VΠ ≤ C3 · e−C4/ε

where the C’s are positive constants depend on f , g, h, ϕ and T , but independent of ε.

a
Yan and Reiffers-Masson, “Certainty Equivalence Control-Based Heuristics in Multi-Stage Convex Stochastic

Optimization Problems”
b

var [E(x, u) | x, u] ≤ ε holds uniformly for all (x, u)
c

feasibility means that πt (x) ∈ U(x) = {u | g(x, u) ≤ 0, h(x, u) = 0}
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Recapitulation (II)

max
Π : X → U

EΠ

[ T∑
t=1

r · (X(t) − U(t), U(t))
]
:= Vopt(X(1))

s.t. X(t + 1) = ϕ(X(t), U(t)) + E(X(t), U(t)),

U(t) · 1⊤ = α, 0 ≤ U(t) ≤ X(t),

X(1) is given

max
u[1, T ]

[ T∑
t=1

r · (x(t) − u(t), u(t))
]
:= Vrel(X(1))

s.t. x(t + 1) = ϕ(x(t), u(t)),

u(t) · 1⊤ = α, 0 ≤ u(t) ≤ x(t),

x(1) = X(1) is given

Corollary: Special Case of Restless Bandit Problem with N arms
a Let u∗(t), x∗(t), 1 ≤ t ≤ T be an optimal solution to the r.h.s. above. For a feasible
policy Π and all t , if πt in a neighbourhood of x∗(t):

1. is Lipschitz-continuous ⇒ Vopt − VΠ ≤ C1/
√

N

2. is affine ⇒ Vopt − VΠ ≤ C3 · e−C4N

a
Gast, Gaujal, and Yan, “LP-based policies for restless bandits: necessary and sufficient conditions for

(exponentially fast) asymptotic optimality”

✠ These results tell us nothing about how to construct a such
policy π!
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Back on RB and WCMDP (finite horizon)

Restless Bandits (finite horizon):

• The Lagrangian policy with optimal tiebreaking 8: O(1/
√

N)

• The fluid-priority policy 9: O(1/N) if non-degenerate
• The water-filling policy; the LP-update policy 10: e−O(N) if

non-degenerate + taking care of the rounding error

Weakly Coupled MDPs (finite horizon):

• The fluid-priority policy 11: O(1/N) if non-degenerate (weaker)
• The LP-update policy 12: O(1/N) if non-degenerate
• The occupation measure sampling policy 13: O(1/

√
N) overall

8
Brown and Smith, “Index Policies and Performance Bounds for Dynamic Selection Problems”

9
Zhang and Frazier, “Restless Bandits with Many Arms: Beating the Central Limit Theorem”

10
Gast, Gaujal, and Yan, “LP-based policies for restless bandits: necessary and sufficient conditions for

(exponentially fast) asymptotic optimality”
11

Zhang and Frazier, “Near-optimality for infinite-horizon restless bandits with many arms”
12

Gast, Gaujal, and Yan, “The LP-update policy for weakly coupled Markov decision processes”
13

Zayas-Cabán, Jasin, and Wang, “An Asymptotically Optimal Heuristic for General Non-Stationary
Finite-Horizon Restless Multi-Armed Multi-Action Bandits”



Motivation (Re)Formulate the RB and the WCMDP Framework to construct CEC Policy Construction and Regularity Conclusion

What We Expect vs. What We Get in Reality

A Problem of Water Filling
• We fill a fixed amount of water into a collection of buckets to gain a utility. The

buckets are classified into good (fully filled), mediocre (partially filled) and bad
(no filled) via our estimation

• To maximize the utility, the proportions to partially fill the mediocre buckets have
been carefully estimated, see the dotted lines in Mediocre buckets

Good Mediocre Bad

Fixed total amount of water

Good Mediocre Bad

How to fill
in reality?

(What We Expect) (What We Really Get)

The challenge of
best matching the
reality with our
expectation

♣ The challenge is that the size of the buckets are random variables and our
estimation are based on their mean values, before knowing their true values a

a
See Gast, Gaujal, and Yan, “LP-based policies for restless bandits: necessary and sufficient conditions for

(exponentially fast) asymptotic optimality”, Section 4.2 for an illustration of how this problem is related to the RB
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Policy Construction: Projection
For each time-step t , the feasible control set is

U(X(t)) = {u | g(X(t),u) ≤ 0, h(X(t),u) = 0}⇝ a set parameterized by X(t)

Idea: We project the vector x∗(t) onto U(X(t)).

The Projection Policy
Let u∗(t), x∗(t), 1 ≤ t ≤ T be an optimal solution to the deterministic
problem. The projection policy consists of taking for each time-step t

π
(proj)
t : X(t) 7→ ProjU(X(t))(x

∗(t))

Advantages:

1. π
(proj)
t (·) is feasible by construction

2. π
(proj)
t (x∗(t)) = u∗(t), and we expect that π(proj)

t (X(t)) ≈ u∗(t), provided that
X(t) ≈ x∗(t)

3. A projection is relatively easy to compute (compared to solving a multi-stage
mathematical program each time for the update policy)

♣: The analysis for the regularity of the mapping π
(proj)
t (·) is non-trivial. See Yan and Reiffers-Masson, “Certainty

Equivalence Control-Based Heuristics in Multi-Stage Convex Stochastic Optimization Problems”, Appendix B
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Policy Construction: Update
For each time-step t , given the current state vector X(t), we solve a new
program

Vrel(X(t)) := max
u[t ,T ]

[ T∑
t=t′

f (x(t ′),u(t ′))
]

s.t. x(t ′ + 1) = ϕ(x(t ′),u(t ′)),
g(x(t ′),u(t ′)) ≤ 0, h(x(t ′),u(t ′)) = 0,
x(t) = X(t) is given

Idea: Denote by û[t ,T ] an optimal solution. We pick the first (the t-th for real) control
û(t)

The Update Policy
For each time-step t , upon observing the state vector X(t), solve the program
Vrel(X(t)) for û[t ,T ], and use the control

π
(update)
t : X(t) 7→ û(t) ∈ the first control of argmax

u[t,T ]
Vrel(X(t))

♣: The analysis for the regularity of the mapping π
(update)
t (·) relies on the same set of

tools for analysing π
(proj)
t (·).
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Vrel(X(t)) for û[t ,T ], and use the control

π
(update)
t : X(t) 7→ û(t) ∈ the first control of argmax

u[t,T ]
Vrel(X(t))

♣: The analysis for the regularity of the mapping π
(update)
t (·) relies on the same set of

tools for analysing π
(proj)
t (·).
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Illustration of the Regularity
Projection onto a polygon:

x∗
π = ΠK (p∗)(x∗)

small perturbation−−−−−−−−−−−−→
on p∗

xπ = ΠK (p)(x∗)

x∗

K (p∗) K (p)

x∗
π

xπ

”sticky face”

x∗

x∗
π

xπ

K (p∗)

K (p)

On the left, x∗
π is non-degenerate. On the right, x∗

π is degenerate 14

14
The terminology ”sticky face” is coined in the survey article Robinson, “Variational conditions with smooth

constraints: structure and analysis”
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Is CEC always a good idea?

In some cases completely ignore uncertainty
can lead to severe consequences. a

a
Taken from a slide in this video of Phebe Vayanos:

Robust Optimization and Sequential Decision-Making

a Minimize over vector x :
∥(A0 + uA1) · x − b∥2

where u ∼ uniform(−2, 2), A0, A1 and
b are known matrices and vector.
xnom: Use the nominal value (CEC)
xstoch: Stochastic optimization
xwc: Worst case optimization (RO)

a
Taken from Boyd and Vandenberghe, Convex

optimization, Example 6.5, page 320

https://www.youtube.com/watch?v=clzfqPgLb1A&list=LL&index=22&t=453s&ab_channel=CompSustNet
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Link with Robust and Distributional Robust Optimization
✠ : π(x∗) = u∗ is unnecessary if we are not interested in the asymptotic limit
where the variances are zero
♠ : What we really need is less demanding:

π(X) ≈ u∗ for any X ≈ x∗ and π(·) are smooth there

Use barrier functions 15 to smooth out the degenerate corners (dotted curves)
16

x∗

u∗

K (p1) / K (p2) :

K (p∗) : what we would expect

what we really get

K (p∗)

K (p1)

K (p2)

Cut off the corner: we lose optimality
π is smoother: we gain regularity
Akin to robust optimization

15
Boyd and Vandenberghe, Convex optimization, Section 11.3

16
The link with DRO may be much deeper, see e.g. Blanchet et al., “Unifying Distributionally Robust

Optimization via Optimal Transport Theory”
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What we did not cover in this talk

1. How to dealt with discrete action space?
• Take convex hull: this leads to two layers of relaxation
• Require tools from geometric algorithm and combinatorial

optimization
• Efficiently compute the projection onto the convex hull of a (large)

collection of points; algorithmic version of Caratheodory’s theorem
to apply randomized rounding

2. How to scale in the convex case?
• When all the convex functions are homogenous
• Scale with the horizon T : fluid limit vs. mean field limit
• Formulate the infinite horizon time-averaged reward problem?

3. Interesting applications?
• Network utility maximization problem from telecommunication
• Network inventory management from inventory control
• ... Your turn to discover!
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Based on

1. Infinite horizon RB: Gast, Gaujal, and Yan, “Exponential asymptotic optimality of
Whittle index policy” Queueing Systems

2. Finite horizon RB: Gast, Gaujal, and Yan, “LP-based policies for restless bandits:
necessary and sufficient conditions for (exponentially fast) asymptotic optimality”
Mathematics of Operations Research

3. Finite horizon WCMDPs: Gast, Gaujal, and Yan, “The LP-update policy for
weakly coupled Markov decision processes” arXiv

4. Finite horizon Convex Case: Yan and Reiffers-Masson, “Certainty Equivalence
Control-Based Heuristics in Multi-Stage Convex Stochastic Optimization
Problems” arXiv
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