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Reinforcement learning

e Markov decision process (MDP)

Source: Wikipedia (modified)
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Reinforcement learning

e Markov decision process (MDP) with

o State-action-reward sequence Sy, Ag, Ry, 51, A1, Ra, 52, Ao, . ..
St+1:S/ St:S
Ai=a

e Environment P(s',r|s,a) = P{RHI:T

Source: Wikipedia (modified)
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Reinforcement learning

e Markov decision process (MDP) with
o State-action-reward sequence Sy, Ag, Ry, 51, A1, Ra, 52, Ao, . ..

Si=s
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o Policy parameterization 7(als,8) = P[4; = a| St = §]
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Reinforcement learning

e Markov decision process (MDP) with
o State-action-reward sequence Sy, Ag, Ry, 51, A1, Ra, 52, Ao, . ..

Si=s
Ai=a

o Policy parameterization 7(als,8) = P[4; = a| St = §]

Sip1=s

e Environment P(s',r|s,a) = P{RHI:T

@ Goal: Find a 6 that maximizes the average reward rate

T
J6) = tim =S B[R] =E[R)

Source: Wikipedia (modified)
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Reinforcement learning

e Markov decision process (MDP) with
o State-action-reward sequence Sy, Ag, Ry, 51, A1, Ra, 52, Ao, . ..

Si=s
Ai=a

o Policy parameterization 7(als,8) = P[4; = a| St = §]

7
o Environment P(s',7|s,a) = ]P)|:%+1—_S
t1=T

@ Goal: Find a 6 that maximizes the average reward rate

0= 3 SEiR = iR

e Stationary triplet (S, A, R) ~ limy_, 4 oo (St, Ar, Rt1):

Source: Wikipedia (modified)

PS=s,A=a,R=r]=p(s|0)r(als, ) ZPS r|s,a).
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Reinforcement learning

e Markov decision process (MDP) with
o State-action-reward sequence Sy, Ag, Ry, 51, A1, Ra, 52, Ao, . ..

Si=s
Ai=a

o Policy parameterization 7(als,8) = P[4; = a| St = §]

7
o Environment P(s',7|s,a) = ]P)|:%+1—_S
t1=T

@ Goal: Find a 6 that maximizes the average reward rate

T
J(0) = lim lZ]E[Rt] = E[R)],

T—+o0

e Stationary triplet (S, A, R) ~ limy_, 4 oo (St, Ar, Rt1):

PS=s,A=a,R=71]= a|89 ZPS r|s,a).

Stationary dlstrlbutlon of s
(St,t > 0) under m(als,0)

Source: Wikipedia (modified)
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Policy-gradient algorithms

@ Typical policy-gradient algorithm:
1: Initialize Sp and ©g
2. fort=0,1,2,... do
Sample A; ~ 7(-| S, ©y)
4: Take action A; and observe S;11, Ri11
5: Estimate [V.J(©,)] using the history Sy, ©¢, Ao, R1,...,St, O, As, Ret1, Set1
6
7

w

Update O¢11 + O; + a[[VJ(Gt)]]
: end for
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Policy-gradient algorithms

@ Typical policy-gradient algorithm:
1: Initialize Sp and ©g
2. fort=0,1,2,... do
3 Sample A; ~ 7(-| S, ©y)
4 Take action A; and observe S;11, Ri11
5 ‘Estimate [V.J(6;)] using the history Sp, ©¢, Ao, R1, ..., S, O, Ar, Rit1, Sp41 How?
6: Update @H—l — O; + a[[VJ(@t)]]
7: end for

@ Actor-critic applies the policy-gradient theorem (Sutton and Barto, 2018):

[VI(©0)]  (Rea — [E[R]] + [o(Ser1)] — [0(S)])V log w(A¢[St, ©1).
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Policy-gradient algorithms

@ Typical policy-gradient algorithm:
1: Initialize Sp and ©g
2. fort=0,1,2,... do
3 Sample A; ~ 7(-| S, ©y)
4 Take action A; and observe S;11, Ri11
5 ‘Estimate [V.J(6;)] using the history Sp, ©¢, Ao, R1, ..., S, O, Ar, Rit1, Sp41 How?
6: Update @H—l — O; + a[[VJ(@t)]]
7: end for

@ Actor-critic applies the policy-gradient theorem (Sutton and Barto, 2018):
[VI(©)] < (Riv1 = [E[R]] + [v(Si1)] — [v(S)DV log w(Aq Sy, ).
@ Can we do better by exploiting the system structure?
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Example: M/M/1 queue with admission control

@ Arrival rate A > 0, service rate > 0

e State: queue length s € {0,1,2,...}

@ Actions: accept or reject A— —
@ Admission reward « per job !

@ Holding cost rate 7 per job per time unit
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Example: M/M/1 queue with admission control

@ Arrival rate A > 0, service rate > 0
e State: queue length s € {0,1,2,...} <
@ Actions: accept or reject A— — @—>
@ Admission reward « per job !
@ Holding cost rate 7 per job per time unit
. 1
e Policy w(accept|s, ) = oo
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Example: M/M/1 queue with admission control

Arrival rate A > 0, service rate > 0

State: queue length s € {0,1,2,...} <
Actions: accept or reject A— —
Admission reward « per job !

Holding cost rate n per job per time unit

Polic acceptl|s, ) = ————
iy wlaccept]s,0) = g
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Example: M/M/1 queue with admission control

@ Arrival rate A > 0, service rate > 0

e State: queue length s € {0,1,2,...} <

@ Actions: accept or reject A— — @—>
@ Admission reward « per job !

@ Holding cost rate 7 per job per time unit

e Policy w(accept|s, ) = with parameter vector 6 = (6y, 61, ...,0%)

1 + efemin(s,k)

+o0 +oo
Average reward rate J(f) = a x (Zp(s\@)w(accept[s,@)) —n X (Zp(s\ﬁ)s) X %
5=0 s=0
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Example: M/M/1 queue with admission control

@ Arrival rate A > 0, service rate > 0
S
e State: queue length s € {0,1,2,...} —
@ Actions: accept or reject A— — @—>
@ Admission reward « per job !
@ Holding cost rate 7 per job per time unit
e Policy (accept|s, ) = ———;——— with parameter vector § = (6o, 01, ..., 0k)
1 + e min(s,k)

+oo “+oo 1
@ Average reward rate J(f) = a X Zp(s\@)w(accept[s,@) —n X Zp(s\ﬁ)s X —

s=0 s=0 A

~—

Mean queue size
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Example: M/M/1 queue with admission control

@ Arrival rate A > 0, service rate > 0

e State: queue length s € {0,1,2,...} <

@ Actions: accept or reject A— — @—>
@ Admission reward « per job !

@ Holding cost rate 7 per job per time unit

e Policy w(accept|s, ) = with parameter vector 6 = (6y, 61, ...,0%)

1 + efemin(s,k)

+o0 +oo
@ Average reward rate J(f) = a X (Zp(s\@)w(accept[s,@)) —n X (Zp(s\ﬁ)s) X %
s=0 s=0

k—1 A 1is>i} 2 max(s—k,0)
e Stationary distribution p(s|f) H <7r(accept|i,0)> <7r(accept|k;,9)>

L\ 1

1=0
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Example: M/M/1 queue with admission control

@ Arrival rate A > 0, service rate > 0

e State: queue length s € {0,1,2,...} <

@ Actions: accept or reject A— — @—>
@ Admission reward « per job !

@ Holding cost rate 7 per job per time unit

e Policy w(accept|s, ) = with parameter vector 6 = (6y, 61, ...,0%)

1 + efemin(s,k)

+o0 +oo
@ Average reward rate J(f) = a X (Zp(s\@)w(accept[s,@)) —n X (Zp(s\ﬁ)s) X %
s=0 s=0

« Depends on s ~—_—>
. T . A ) A . - max(s—k,0)
e Stationary distribution p(s|f) H —m(accept|i, 0) —m(accept|k, 0)
, 1 L
=0
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Our approach

e We consider MDPs and policy parameterizations 7 (als, 8) such that the Markov chain
(St,t > 0) has a product-form stationary distribution p(s|0)
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Our approach

e We consider MDPs and policy parameterizations 7 (als, 8) such that the Markov chain
(St,t > 0) has a product-form stationary distribution p(s|0)

@ We exploit the product form to introduce a new policy-gradient algorithm

@ We show that this algorithm has nice convergence properties

@ Main contributions:

© Product-form distributions as exponential families
@ Score-aware gradient estimator (SAGE)

© SAGE-based policy-gradient algorithm

© Nonconvex convergence result
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(D Product-form distributions as exponential families

@ Product-form distribution

p(el6) = o [[ i)
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(D Product-form distributions as exponential families

@ Product-form distribution

p(s16) = o [[ @)=
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(D Product-form distributions as exponential families

@ Product-form distribution
o Depends on s

n

p(10) = 5 [ L@

=1
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(D Product-form distributions as exponential families

@ Product-form distribution
p(s10) = 5 [Lo(©)"

e Feature function z = (z1,z2,...,2,)
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(D Product-form distributions as exponential families

@ Product-form distribution

p(s10) = o i)

e Feature function z = (z1, 29, ...

e Load function p = (p1, p2,- ..
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(D Product-form distributions as exponential families

@ Product-form distribution
p(sl) = L [ o)
Z(0) ;5

Feature function z = (z1,z2,...,2y)

Load function p = (p1,p2,. .-, pn)

Partition function Z

20)=>_I[ro)"®

s =1
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(D Product-form distributions as exponential families

Product-form distribution

p(el6) = o [[ i)

Feature function = = (x1, 2o, ...

Load function p = (p1, p2, ...
Partition function Z

20)=>_I[ro)"®

s =1

Céline Comte

Exponential family of distributions
log p(s[f) = log p(0)Tx(s) — log Z(0)
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(D Product-form distributions as exponential families

Product-form distribution

p(el6) = o [[ i)

Feature function = = (x1, 2o, ...

Load function p = (p1, p2, ...
Partition function Z

20)=>_I[ro)"®

s =1
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,Tp)

7,0n)

Exponential family of distributions
log p(s[f) = log p(0)Tx(s) — log Z(0)

Feature function z = (x1,x9,...,2,)
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(D Product-form distributions as exponential families

Product-form distribution Exponential family of distributions
L zi(s)
p(slf) = 75 [1ri0)" log p(s]0) = log p(8)Tz(s) — log Z(6)
i=1
Feature function z = (21,22, ...,2;,) Feature function x = (z1,x9,...,2,)
Load function p = (p1, p2,---,pn) Log-load function log p = (log p1, . .., log p,)

Partition function Z

20)=>_I[ro)"®

s =1
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(D Product-form distributions as exponential families

Product-form distribution
0) = ——
plslo) =

Feature function z = (21,29, ..

Load function p = (p1, p2, ...

Exponential family of distributions

[T i)™ log p(s]8) = log p(8)Ta(s) — log Z(6)
i=1
.y Tp) Feature function x = (z1,x9,...,2,)
s Pn) Log-load function log p = (log p1, . . ., log py)

Partition function Z

20)=>_I[ro)"®

Céline Comte
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Log-partition function log Z

log Z(0) = log (Z elos p(e)Tz(S))
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(2) Score-aware gradient estimator (SAGE)

@ The score is the gradient of the log-likelihood with respect to the parameter vector:

“Likelihood” = p(s|#) — “Score” = Vlogp(s|f).
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(2) Score-aware gradient estimator (SAGE)

@ The score is the gradient of the log-likelihood with respect to the parameter vector:

“Likelihood” = p(s|#) — “Score” = Vlogp(s|@).

Recalling that (S, A, R) ~ stationary distribution of ((Si, A¢, Rev1),t > 0), we have

Vlogp(s|f) = Dlog p(0)T(z(s) — E[z(S)]),
VJ(6) = Dlog p(0)TCov[R, z(S)] + E[R V log w(A|S, 0)].
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(2) Score-aware gradient estimator (SAGE)

@ The score is the gradient of the log-likelihood with respect to the parameter vector:

“Likelihood” = p(s|#) — “Score” = Vlogp(s|@).

Recalling that (S, A, R) ~ stationary distribution of ((Si, A¢, Rev1),t > 0), we have

Vlogp(s|f) = Dlog p(0)T(z(s) — E[z(S)]),
VJ(6) = Dlog p(0)TCov[R, z(S)] + E[R V log w(A|S, 0)].

e Main take-away: If we can evaluate D log p(f), this gives us an estimator for V.J ().
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(3) SAGE-based policy-gradient algorithm

@ Typical policy-gradient algorithm:
1: Initialize Sy and ©g
2: fort=0,1,2,... do
Sample At ~ TF(”St, C"‘)t)
4 Take action A; and observe S; 11, Ri11
5 |Estimate [[VJ(@t)]] using the history Sp, ©g, Ag, R1,-..,St, O, Ay, Ryt St+1| How?
6: Update ©441 <+ O; + a[VJ(04)]
7: end for

w
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(3) SAGE-based policy-gradient algorithm

@ Typical policy-gradient algorithm:
1: Initialize Sy and ©g
2: fort=0,1,2,... do
3: Sample A; ~ TF(”St, C"‘)t)
4 Take action A; and observe S; 11, Ri11
5 |Estimate [[VJ(@t)]] using the history Sp, ©g, Ag, R1,-..,St, O, Ay, Ryt St+1| How?
6: Update ©441 <+ O; + a[VJ(04)]
7: end for

@ Actor-critic applies the policy-gradient theorem (Sutton and Barto, 2018):
[VJ(©1)] = (Riv1 — [E[R]] + [v(Si1)] = [v(S)])V Iog w(A¢[ S, ©).
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(3) SAGE-based policy-gradient algorithm

@ Typical policy-gradient algorithm:
1: Initialize Sy and ©g
2: fort=0,1,2,... do
3: Sample A; ~ TF(”St, C"‘)t)
4 Take action A; and observe S; 11, Ri11
5 |Estimate [[VJ(@t)]] using the history Sp, ©g, Ag, R1,-..,St, O, Ay, Ryt St+1| How?
6: Update ©441 <+ O; + a[VJ(04)]
7: end for

@ Actor-critic applies the policy-gradient theorem (Sutton and Barto, 2018):
[VI(©)] ¢ (Ri1 — [E[R]] + [v(Si1)] = [v(S)])V log w(A] S, ©4).

@ We instead estimate [V.J(O;)] with a score-aware gradient estimator (SAGE):
[VJ(©1)] = Dlog p(6:)"[Cov[R, z(S)]] + [E[RV log 7(AS, ©4)]]-
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Example: M/M/1 queue with admission control

Stable case
@ Arrival rate A = 0.7, service rate y =1
@ Admission reward o = 5

@ Holding cost rate n =1

e Optimal policy mo(0*) = m1(
and 73(0*) = 0.

r— ] — 1) (D) —
!
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Example: M/M/1 queue with admission control

Stable case Possibly-unstable case
@ Arrival rate A = 0.7, service rate y =1 @ Arrival rate \ = 1.4, service rate p =1
@ Admission reward o = 5 @ Admission reward o = 5
@ Holding cost rate n =1 @ Holding cost rate n =1
o Initial policy m(00) = (3, 3.3 3) e Initial policy 7(©9) = (3,3, 3. 3)
e Optimal policy mg(0*) = m1(0*) = m2(0*) =1 e Optimal policy 7o(0") = 7,(0") = 1 and
and m3(6*) = 0. mo(0%) = m3(0*) = 0.
=

r— ] — 1) (D) —
!
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Example: M/M/1 queue with admission control

Stable case
@ Arrival rate A = 0.7, service rate y =1
@ Admission reward o = 5

@ Holding cost rate n =1

1
2
e Optimal policy mo(6*) = m1(6%) = m2(0*) =1
and 73(0*) = 0.

A [F] —
!

Céline Comte

Possibly-unstable case

Arrival rate A\ = 1.4, service rate p =1

@ Admission reward o = 5

@ Holding cost rate n =1

e Initial policy 7(©9) = (3,3, 3. 3)

@ Optimal policy mo(0") = 7 (0*) = 1 and
mo(0*) = m3(0*) = 0.

Simulation setup

e 10° steps

e Convergence time T: J(©;) > J(0*) — ¢
for each t € {T, T +1,...,10%}
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Example: M/M/1 queue with admission control

Stable case — Convergence times

SAGE - 50% |- 'o R

SAGE — 20% |- tl{ 8

SAGE — 10% |- b .

AC - 50% |- }Illo 8

AC = 20% |- }—H:H R

AC - 10% |- }—[ﬂ{ 8
Time t

Céline Comte Reinforcement Learning for Stochastic Networks 9/15



Example:

SAGE - 50%
SAGE - 20%
SAGE - 10%
AC - 50%
AC - 20%

AC - 10%

M/M/1 queue with admission control

Stable case — Convergence times

Céline Comte

10*
Time ¢t

SAGE - 5%
SAGE - 2%
SAGE - 1%
AC - 5%
AC - 2%

AC - 1%

b

Reinforcement Learning for Stochastic Networks
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Example: M/M/1 queue with admission control

Stable case — SAGE

1 T T 117

°
o

o
o

Policy 7;(©;)
<
i
I

©
o
T

0
102 103 10* 10° 10°
Time ¢t
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Example: M/M/1 queue with admission control

Stable case — Actor-critic

1 T T 117

°
o

o
o

Policy 7;(©;)
<
i
I

©
o
T

103 10* 10° 10°

0
102
Time t
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Example: M/M/1 queue with admission control

Possibly-unstable case — SAGE

1 T T T 1717 T T TT] T T T 11

°
o
T

o
o
T

Policy 7;(©;)
<
i
I

©
o
T

0 L] L] I B e S T——
10 10° 10* 10° 10°
Time t
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Example: M/M/1 queue with admission control

Possibly-unstable case — Actor-critic

1 T T T T 1] T T T 0 T T T 1T T T T 7171

°
o
T

o
o
T

Policy 7;(©;)
<
i
T

o
o
T

0
102 103 10* 10° 10°
Time ¢t
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@ Local convergence result

Sketch of Theorem

Under additional assumptions, a batch variant of the algorithm that starts in a basin of
attraction of a global maximizer will converge to a global maximizer with large probability.
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Under additional assumptions, a batch variant of the algorithm that starts in a basin of
attraction of a global maximizer will converge to a global maximizer with large probability.

Proof: See preprint when available.

What are these “additional assumptions”?
@ There exists a neighborhood of the global maximizer where:

e The Markov chain of state-action pairs is geometrically ergodic.

o The objective function behaves approximately in a convex manner in directions that are
perpendicular to the set of global maximizers.

e The function Dlog p is bounded and the functions z, r, and r Vlog w grow slowly enough.

@ The step sizes are decreasing and the batch sizes are increasing.
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Conclusion

) Main contributions Product-form Stationary distribution
@ Product-form distributions as exponential families log p(s|6) = log p(60)Tx(s) — log Z ()
@ Score-aware gradient estimator (SAGE) {
© SAGE-based policy-gradient algorithm Vlog p(s|0) = Dlog p(0)T(z(s) — E[x(S)])
© Nonconvex convergence result Score-aware gradient estimator (SAGE)
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© SAGE-based policy-gradient algorithm

Vlogp(s|f) = Dlog p(0)T(z(s) — E[z(S5)])
© Nonconvex convergence result

Score-aware gradient estimator (SAGE)

@ Future research directions

o Run extensive numerical results on more challenging examples.
o Find better estimators for covariance and expectation, such as robust estimators.

o Apply to (queueing) systems where the stationary distribution is known only up to a
multiplicative constant.
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