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Reinforcement learning

Markov decision process (MDP)

with

State-action-reward sequence S0, A0, R1, S1, A1, R2, S2, A2, . . .

Environment P (s′, r|s, a) = P
[
St+1=s′

Rt+1=r

∣∣∣ St=s
At=a

]
Policy parameterization π(a|s, θ) = P[At = a |St = s]

Goal: Find a θ that maximizes the average reward rate

J(θ) = lim
T→+∞

1

T

T∑
t=1

E[Rt]

= E[R],

Stationary triplet (S,A,R) ∼ limt→+∞(St, At, Rt+1):

P[S = s,A = a,R = r] = p(s|θ)π(a|s, θ)
∑
s′

P (s′, r|s, a).

Source: Wikipedia (modified)
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Céline Comte Reinforcement Learning for Stochastic Networks 1 / 15

https://en.wikipedia.org/wiki/Markov_decision_process#/media/File:Markov_Decision_Process.svg


Reinforcement learning

Markov decision process (MDP) with

State-action-reward sequence S0, A0, R1, S1, A1, R2, S2, A2, . . .

Environment P (s′, r|s, a) = P
[
St+1=s′

Rt+1=r

∣∣∣ St=s
At=a

]
Policy parameterization π(a|s, θ) = P[At = a |St = s]

Goal: Find a θ that maximizes the average reward rate

J(θ) = lim
T→+∞

1

T

T∑
t=1

E[Rt] = E[R],

Stationary triplet (S,A,R) ∼ limt→+∞(St, At, Rt+1):

P[S = s,A = a,R = r] = p(s|θ)π(a|s, θ)
∑
s′

P (s′, r|s, a).

Source: Wikipedia (modified)

Stationary distribution of
(St, t ≥ 0) under π(a|s, θ)
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Policy-gradient algorithms

Typical policy-gradient algorithm:

1: Initialize S0 and Θ0

2: for t = 0, 1, 2, . . . do
3: Sample At ∼ π(·|St,Θt)
4: Take action At and observe St+1, Rt+1

5: Estimate J∇J(Θt)K using the history S0,Θ0, A0, R1, . . . , St,Θt, At, Rt+1, St+1

6: Update Θt+1 ← Θt + αJ∇J(Θt)K
7: end for

Actor-critic applies the policy-gradient theorem (Sutton and Barto, 2018):

J∇J(Θt)K← (Rt+1 − JE[R]K + Jv(St+1)K− Jv(St)K)∇ log π(At|St,Θt).

Can we do better by exploiting the system structure?
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Example: M/M/1 queue with admission control

Arrival rate λ > 0, service rate µ > 0

State: queue length s ∈ {0, 1, 2, . . .}
Actions: accept or reject

Admission reward α per job

Holding cost rate η per job per time unit

µ

s

AgentAgentλ

Policy π(accept|s, θ) = 1

1 + e−θs

Average reward rate J(θ) = α×

(
+∞∑
s=0

p(s|θ)π(accept|s, θ)

)
− η ×

(
+∞∑
s=0

p(s|θ)s

)
× 1

λ

Stationary distribution p(s|θ) ∝
k−1∏
i=0

(
λ

µ
π(accept|i, θ)

)1{s≥i}
(
λ

µ
π(accept|k, θ)

)max(s−k,0)
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Céline Comte Reinforcement Learning for Stochastic Networks 3 / 15



Example: M/M/1 queue with admission control

Arrival rate λ > 0, service rate µ > 0

State: queue length s ∈ {0, 1, 2, . . .}
Actions: accept or reject

Admission reward α per job

Holding cost rate η per job per time unit

µ

s

AgentAgentλ

Policy π(accept|s, θ) = 1

1 + e−θmin(s,k)
with parameter vector θ = (θ0, θ1, . . . , θk)

Average reward rate J(θ) = α×

(
+∞∑
s=0

p(s|θ)π(accept|s, θ)

)
− η ×

(
+∞∑
s=0

p(s|θ)s

)
× 1

λ

Stationary distribution p(s|θ) ∝
k−1∏
i=0

(
λ

µ
π(accept|i, θ)

)1{s≥i}
(
λ

µ
π(accept|k, θ)

)max(s−k,0)
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Our approach

We consider MDPs and policy parameterizations π(a|s, θ) such that the Markov chain
(St, t ≥ 0) has a product-form stationary distribution p(s|θ)

We exploit the product form to introduce a new policy-gradient algorithm

We show that this algorithm has nice convergence properties

Main contributions:
1 Product-form distributions as exponential families
2 Score-aware gradient estimator (SAGE)
3 SAGE-based policy-gradient algorithm
4 Nonconvex convergence result
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1 Product-form distributions as exponential families

Product-form distribution

p(s|θ) = 1

Z(θ)

n∏
i=1

ρi(θ)
xi(s)

Feature function x = (x1, x2, . . . , xn)

Load function ρ = (ρ1, ρ2, . . . , ρn)

Partition function Z

Z(θ) =
∑
s

n∏
i=1

ρi(θ)
xi(s)

Exponential family of distributions

log p(s|θ) = log ρ(θ)⊺x(s)− logZ(θ)

Feature function x = (x1, x2, . . . , xn)

Log-load function log ρ = (log ρ1, . . . , log ρn)

Log-partition function logZ

logZ(θ) = log

(∑
s

elog ρ(θ)
⊺x(s)

)

Céline Comte Reinforcement Learning for Stochastic Networks 5 / 15



1 Product-form distributions as exponential families

Depends on θ

Product-form distribution

p(s|θ) = 1

Z(θ)

n∏
i=1

ρi(θ)
xi(s)

Feature function x = (x1, x2, . . . , xn)

Load function ρ = (ρ1, ρ2, . . . , ρn)

Partition function Z

Z(θ) =
∑
s

n∏
i=1

ρi(θ)
xi(s)

Exponential family of distributions

log p(s|θ) = log ρ(θ)⊺x(s)− logZ(θ)

Feature function x = (x1, x2, . . . , xn)

Log-load function log ρ = (log ρ1, . . . , log ρn)

Log-partition function logZ

logZ(θ) = log

(∑
s

elog ρ(θ)
⊺x(s)

)
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2 Score-aware gradient estimator (SAGE)

The score is the gradient of the log-likelihood with respect to the parameter vector:

“Likelihood” = p(s|θ) → “Score” = ∇ log p(s|θ).

Theorem

Recalling that (S,A,R) ∼ stationary distribution of ((St, At, Rt+1), t ≥ 0), we have

∇ log p(s|θ) = D log ρ(θ)⊺(x(s)− E[x(S)]),
∇J(θ) = D log ρ(θ)⊺Cov[R, x(S)] + E[R∇ log π(A|S, θ)].

Main take-away: If we can evaluate D log ρ(θ), this gives us an estimator for ∇J(θ).
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3 SAGE-based policy-gradient algorithm

How?

Typical policy-gradient algorithm:

1: Initialize S0 and Θ0

2: for t = 0, 1, 2, . . . do
3: Sample At ∼ π(·|St,Θt)
4: Take action At and observe St+1, Rt+1

5: Estimate J∇J(Θt)K using the history S0,Θ0, A0, R1, . . . , St,Θt, At, Rt+1, St+1

6: Update Θt+1 ← Θt + αJ∇J(Θt)K
7: end for

Actor-critic applies the policy-gradient theorem (Sutton and Barto, 2018):

J∇J(Θt)K← (Rt+1 − JE[R]K + Jv(St+1)K− Jv(St)K)∇ log π(At|St,Θt).

We instead estimate J∇J(Θt)K with a score-aware gradient estimator (SAGE):

J∇J(Θt)K← D log ρ(Θt)
⊺JCov[R, x(S)]K + JE[R∇ log π(A|S,Θt)]K.
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Example: M/M/1 queue with admission control

Stable case

Arrival rate λ = 0.7, service rate µ = 1

Admission reward α = 5

Holding cost rate η = 1

Initial policy π(Θ0) = (12 ,
1
2 ,

1
2 ,

1
2)

Optimal policy π0(θ
⋆) = π1(θ

⋆) = π2(θ
⋆) = 1

and π3(θ
⋆) = 0.

Possibly-unstable case

Arrival rate λ = 1.4, service rate µ = 1

Admission reward α = 5

Holding cost rate η = 1

Initial policy π(Θ0) = (12 ,
1
2 ,

1
2 ,

1
2)

Optimal policy π0(θ
⋆) = π1(θ

⋆) = 1 and
π2(θ

⋆) = π3(θ
⋆) = 0.

µ

s

AgentAgentλ

Simulation setup

106 steps

Convergence time T : J(Θt) > J(θ⋆)− ϵ
for each t ∈ {T, T + 1, . . . , 106}
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Example: M/M/1 queue with admission control

Stable case – Convergence times

104 105

AC – 10%

AC – 20%

AC – 50%

SAGE – 10%

SAGE – 20%

SAGE – 50%

Time t

105 106

AC – 1%

AC – 2%

AC – 5%

SAGE – 1%

SAGE – 2%

SAGE – 5%

Time t
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Example: M/M/1 queue with admission control

102 103 104 105 106
0
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P
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Stable case – SAGE
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Possibly-unstable case – Actor-critic
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4 Local convergence result

Sketch of Theorem

Under additional assumptions, a batch variant of the algorithm that starts in a basin of
attraction of a global maximizer will converge to a global maximizer with large probability.

Proof: See preprint when available.

What are these “additional assumptions”?

There exists a neighborhood of the global maximizer where:

The Markov chain of state-action pairs is geometrically ergodic.
The objective function behaves approximately in a convex manner in directions that are
perpendicular to the set of global maximizers.
The function D log ρ is bounded and the functions x, r, and r∇ log π grow slowly enough.

The step sizes are decreasing and the batch sizes are increasing.
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Conclusion

Main contributions
1 Product-form distributions as exponential families
2 Score-aware gradient estimator (SAGE)
3 SAGE-based policy-gradient algorithm
4 Nonconvex convergence result

Future research directions

Run extensive numerical results on more challenging examples.
Find better estimators for covariance and expectation, such as robust estimators.
Apply to (queueing) systems where the stationary distribution is known only up to a
multiplicative constant.

Product-form stationary distribution

log p(s|θ) = log ρ(θ)⊺x(s)− logZ(θ)

↓
∇ log p(s|θ) = D log ρ(θ)⊺(x(s)− E[x(S)])
Score-aware gradient estimator (SAGE)

Product-form stationary distribution

log p(s|θ) = log ρ(θ)⊺x(s)− logZ(θ)

↓
∇ log p(s|θ) = D log ρ(θ)⊺(x(s)− E[x(S)])
Score-aware gradient estimator (SAGE)
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