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Motivation



Exploration is hard!
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Sparse and binary 
outcomes Multiple objectives

High-dimensional 
state spaces

All images are generated using Dalle 2 https://openai.com/dall-e-2
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Curriculum Learning [Bengio et al. 2009]

1 + 1 + 1 = 3

5 - 1 - 2 = 2

7 - 3 + 4 = 8

Task Complexity

3 x 1 = 3

5 x 1 - 3 = 2

8 ÷ 2 x 2 = 8

3 x (1 + 3) = 12

7 ÷ 2 = 3.5

x ÷ 2 = 8 + 4



Making tasks easier: MDP degrees of freedom
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Making tasks easier: MDP degrees of freedom

6

States Actions
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Q-Learning [Watkins & Dayan (1992)]
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Richard Bellman

How good is being in a state s and performing an action a?Q(s,a)

state
ac

tio
n

1.234 1.434

0.234

1.434
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Target Task

Source 
Task(s)

The 
curriculum 
is given!
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Allow target task policy play its own actions

Mitigate distributional shift
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Proof-of-concept

Mountain Car
Taxi cab Frozen Lake
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Results

Mountain Car Taxi cab Frozen Lake
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