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Markov Decision Processes and Four Rooms instance

Four rooms:

S = J0 ; 100K, A = {N,S,E,W}
Reward: −1 until exit is reached, 0 otherwise.
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Four Rooms optimal Value Function
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Increasing complexity
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Litterature context

Our objectives:

Find a good approximation of a large MDP

Find the optimal policy on this approximation

To this end, we need:

State Abstraction context to have intuition on how to build a final
“good” abstraction

Approximate Dynamic Programming to solve the new simplified
problem iterating a contracting operator

Orso Forghieri Adaptive Aggregation November 20, 2023 7 / 29



Hierarchical Reinforcement Learning1

Two types of learnable hierarchy to divide a MDP:

Temporal Abstraction: apply a series of actions that skip
timesteps (like a given skill)

Spatial Abstraction: Divide state space into regions and jump
from one to another

1[Abel, 2022] gives a good insight of it.
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State Abstraction for Markov Decision Processes

State Abstraction characteristics:

Gather similar states2 into regions to form a new simpler MDP3

Reasonable loss of information4

Fastly built abstraction

2same value, same Q-value or same policy
3[Abel et al., 2016]
4[Abel et al., 2019]
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State Abstraction
buildings[Tsitsiklis and Van Roy, 1996]
Let S = {s1, s2, s3} = S1 ⊔ S2 = {s1, s2} ⊔ {s3}. We define:

ϕ := (1s∈Sk
)s∈S,1≤k≤K =

1 0
1 0
0 1


and

ω :=
(
ϕT · ϕ

)−1 · ϕT =

(
1
2

1
2 0

0 0 1

)
Then

V ∈ RS
Π:=ϕ·ω
−−−→ Ṽ ∈ RS ω

−−−→←−−−
ϕ

V ∈ RK

V =

3
4
5

 Π:=ϕ·ω
−−−→

3.5
3.5
5

 ω
−−−→←−−−

ϕ

(
3.5
5

)
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Abstract MDP definition5

For an original MDP
M = (S,A, T,R, γ)

Abstract transition and reward depending on the original:

Rabs = ω ·R, Tabs = ω · T · ϕ

and its optimal value function V∗ is the solution of

V∗ = T ∗
absV

∗

5[Abel et al., 2016]
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State Abstraction application

V∗ =


−96
−96.96
−96.96
−97.37

 ∈ R4
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Approximate Value Iteration
VI:

Vt+1 ← T ∗Vt

= max
a∈A

(Ra + γTa · V )

AVI6:
Vt+1 ← ΠT ∗Vt

where Π is a projector on a subspace of RS .

For State Aggregation:

Π = ϕ · ω := ϕ ·
(
ϕT · ϕ

)−1 · ϕT

so we iterate
Vt+1 ← ϕ · ω · T ∗Vt

6[Powell, 2007]
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General context and work

In this work, we achieve to

Aggregate states having close value

Approximate optimal value function

Adapt the method through Q-Value Iteration and Policy Iteration
algorithms
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State Aggregation and Approximate Dynamic
Programming

Lemma (Optimal Error Bound with arbitrary partition, O.F.)

For any piecewise constant value function Ṽ

∥Ṽ − V ∗∥∞ ≤
1

1− γ

(
max

1≤k≤K
SpanSk

(
T ∗Ṽ

)
+ ∥Ṽ −ΠT ∗Ṽ ∥∞

)
where SpanSk

V := maxs∈Sk
V (s)−mins∈Sk

V (s), and V ∗ is the
optimal value function.
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Sketch of proof

Proof.

∥V ∗ − V ∥∞ ≤
1

1− γ
∥V − T ∗V ∥∞

≤ 1

1− γ
(∥ΠT ∗V − T ∗V ∥∞ + ∥V −ΠT ∗V ∥∞)

≤ 1

1− γ

(
max
k

SpanSk
(T ∗V ) + ∥V −ΠT ∗V ∥∞

)

→ Also true for T ∗
Q and T π for any π
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Speed of Approximate Dynamic Programming

Remark

Compared to T ∗, we lose in complexity:
|S|
K computing ΠT ∗(
|S|
K

)3
computing ΠT ∗

Q(
|S|
K

)2
computing ΠT π

where K is the number of regions.
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Adaptive Aggregation algorithm

From

∥Ṽ − V ∗∥∞ ≤
1

1− γ

(
max

1≤k≤K
SpanSk

T ∗Ṽ + ∥Ṽ −ΠT ∗Ṽ ∥∞
)

we propose the following process:

1 Approximate the original state space by a unique trivial region
2 Then alternate between

1 Progressively refine the partitioning along T ∗Ṽ to reduce
max1≤k≤K SpanSk

T ∗Ṽ
2 Iterate the contracting operator ΠT ∗ to reduce Projected Bellman

Residual ∥Ṽ −ΠT ∗Ṽ ∥∞
3 Finish if the two terms are each bounded by ϵ
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Theoretical guarantee

Corollary (Final precision and aggregation criterion)

The algorithm result (Ṽ , {Sk}) checks:

∥V − V ∗∥∞ ≤
2ϵ

1− γ

and

∀k ∈ J1 ; KK, ∀s, s′ ∈ Sk, |V ∗(s)− V ∗(s′)| ≤ 4ϵ

1− γ
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Adaptive Aggregation Value Iteration
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Adaptive Aggregation Value Iteration
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Final Partition

Orso Forghieri Adaptive Aggregation November 20, 2023 23 / 29



Runtime comparison — Random MDPs

Average runtime for variable |S| ∈ J50 ; 1000K
(A = 10, 10 exp/point, random MDP with 95% non-zero, precision 10−2, γ = 0.99)
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Runtime comparison — Random MDPs

Sparsity Agg PI Agg Value Agg Q-Value VI PI

10% 1.52 3.78 8.31 216.28 2.35

40% 2.72 4.06 21.94 783.85 4.36

70% 3.82 4.59 34.91 1311.30 6.28

100% 3.18 4.59 31.08 1048.93 8.85

Average runtime (s) for variable sparsity.
(A = {10, 50, 100}, S ∈ J50 ; 1000K, 5 exp/point, random MDP, precision 10−2,

γ = 0.99)
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Results

Discussion:

Low sparsity =⇒ slow classical Value Iteration

Higher accuracy and greater discount =⇒ our algorithm struggle

Value Iteration ≈ Adaptive Aggregation Value Iteration for sparse
MDPs?
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Conclusion on State Abstraction

We provided:

An efficient Approximate algorithm to compute optimal
Policy/Value Function

Useful State Abstractions

Perspective:

More simulations needed (more models, impact of A, bigger state
space, lower ϵ)

Improve speed of the Policy Iteration-like algorithm

Generalization over model-free problems
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Thank you for your attention!
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