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Restless Bandits in My Research

e 38/77 publications in my Google Scholar profile

> Scheduling in (time-varying) wireless networks
> Congestion avoidance in the Internet

> Scheduling in systems with abandonments

> Dynamic promotion in marketing

> Allocation of funding to prevent company defaults
> Dynamic allocation of failing assets

> Adaptive treatment allocation in clinical trials
> Deadlines, finite horizon

> Arms with absorbing states, no recurrent states
> New arms arrivals, control arms

> Heterogeneous resource requirements



Multi-Armed Bandit Problem

e A decision-making problem addressing the omnipresent
trade-off between learning and earning

> A heuristic long known to gamblers: stay on a

success, switch on a failure

> Formulated by scientists in
> Classic problem in applied

methods from statistics, O
> “Sir, the multi-armed bana

1930s/40s/50s
orobability, addressed by
R, machine learning, etc.

it problem is not of such a

nature that it can be solved”
> Variants motivated by applications in health care,
economics, marketing, telecommunications, etc.
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Randomised Controlled Trials

e [he gold standard design for 2 arms:

> equal (50% vs 50%) fixed randomisation (EFR)
> in use since 1948 (advocated since Hill 1937)

e Its main goal is to learn about intervention
effectiveness with a view to prioritise after-trial subjects

> the intervention effect estimate is unbiased and
unaffected by time trends (if equal on both arms)

> if approved, future subjects are, say, 95% confident
that the novel intervention is better than the control

e A half of trial subjects gets the inferior intervention



Randomised Controlled Trials

e Frequentist statistical testing based on EFR Is a
widespread state-of-the-art approach in the design of
experiments, under different names:

> randomised controlled trial in biostatistics
> between-group design in social sciences
> A/B testing in digital marketing

e However, “controlled” means to compare the novel
Intervention against a control intervention under the
circumstances of the same trial

> departing from EFR may improve on other objectives
than estimation



Bayesian Randomised Controlled Trials

“...there can be no objection to the use of data,
however meagre, as a guide to action required before
more can be collected ... Indeed, the fact that such
objection can never be eliminated entirely—no
matter how great the number of
observations—suggested the possible value of seeking
other modes of operation than that of taking a large
number of observations before analysis or any
attempt to direct our course... This would be
important in cases where either the rate of
accumulation of data is slow or the individuals
treated are valuable, or both.”




Bayesian Randomised Controlled Trials

e Proposed in Thompson (1933) (pre-dates Hill 1937)

e The goal is to provide higher benefit to both in-trial
subjects and after-trial subjects

> as opposed to the EFR’s learning goal of reliable
Intervention effect estimation

e It is done by deciding the allocation, i.e., the
randomisation probabilities for every subject (or for a
group of subjects)

> response-adaptive: decisions based on the responses
accumulated so far, using Bayesian updating



Patient-Centric Clinical Trials

e Focusing on patient benefit

e Important because healing patients is the ultimate goal
of new treatment development

> optimally solving learning/healing trade-off
> both learning and healing takes place during the trial
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Abstract.  Multi-armed bandit problems (MABPs) are a special type of op-
timal control problem well suited to model resource allocation under uncer-

tainty in a wide variety of contexts. Since the first publication of the optimal
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Bernoulli Bandit Model

e Finite horizon: 1" sequentially arriving subjects
t=1,...,T

e Two-armed: intervention k € {C, D} for each subject
e Binary endpoints: success (1) or failure (0)
e 0. is the unknown success probability of intervention £

e Subject t's response from intervention k is

X+ ~ Bernoulli(6y)
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Bayesian Approach

e Replace each 6, by random variable gk whose
distribution Is updated over the trial

o Prior Distribution: ), ~ Beta(s;(0), f#(0)) where we
take s;(0) = fx(0) = 1 (uninformative; uniform distr.)

e Posterior Distribution: After observing s ( f)
successes (failures) on intervention k by time ¢, the
posterior distribution is Beta distribution (by
conjugacy) N

0, ~ Beta(sk(t), fk(t))

where si(t) = s;(0) + sk, fe(t) = fx(0) + fi
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DP Procedure

e We use dynamic programming (DP) to obtain an
optimal adaptive intervention allocation sequence

e Bayes-optimal means maximising the Bayes-expected
total number of successes (patient benefit) in the trial

e Specifically, we use backward recursion algorithm
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DP Procedure: Computational Tractability |

Publication T  T™* SW, HW, RAM

Steck (1964) 25 N/A N/A, UNIVAC 1105, 54 kB
Yakowitz (1969) 5 N/A Fortran, N/A, N/A

Berry (1978) 100 N/A Basic (7), Atari (?), N/A
Ginebra and Clayton (1999) 150 180 N/A, N/A, N/A

Hardwick et al. (2006) 100 200 N/A, N/A, N/A

Ahuja and Birge (2016) 96 240 N/A, Mac 4GB

Williamson et al. (2017) 100 215 R, PC, 16GB

Villar (2018) 100 N/A Matlab, PC, N/A
Kaufmann (2018) 70 N/A N/A, N/A, N/A
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Frequentist UCB Index Rules

e Arm with highest upper confidence bound gets priority

> either it has high sample mean
> or it has high uncertainty around the mean

e Many variants, computationally notably different

e a-UCB (originally a = 2 in Auer et al. (2002)):
si(t) - Ja-In(t+1)
sk(t) + filt) \ sk(t) + fult)
> currently theoretical performance bounds for a@ > 1

> o« = 1 often used in computational papers
> a = 0.18 found numerically as best performing
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Procedures: Frequentist Regret

Designs
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Mean regret number of successes
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The Finite-Horizon Two-Armed Bandit Problem

with Binary Responses

A Multidisciplinary Survey of the History, State of the Art, and Myths

Peter Jacko
Department of Management Science
Lancaster University, UK

June 18, 2019

Abstract

In this paper we consider the two-armed bandit problem, which often naturally appears B

per se or as a subproblem in some multi-armed generalizations, and serves as a starting

point for introducing additional problem features. The consideration of binary responses

is motivated by its widespread applicability and by being one of the most studied settings.

We focus on the undiscounted finite-horizon objective, which is the most relevant in many

applications. We make an attempt to unify the terminology as this is different across disci-

plines that have considered this problem, and present a unified model cast in the Markov

s framework, with subject responses modelled using the Bernoulli distribu- H M

tion, and the corresponding Beta distribution for Bayesian updating. We give an extensive -
account of the history and state of the art of approaches from several disciplines, including ’ UCB
design of experiments, Bayesian decision theory, naive designs, reinforcement learning, | U CB

biostatistics, and combination designs. We evaluate these designs, together with a few

newly proposed, accurately computationally (using a newly written package in Julia pro- ). 1 8UCB

gramming language by the author) in order to compare their performance. We show that .
BMSF

1906.10173v1 [math.OC] 20 Jun 2019

conclusions are different for moderate horizons (typical in practice) than for small horizons

\

(typical in academic literature reporting computational results). We further list and clarify SF
a number of myths about this problem, e.g., we show that, computationally, much 1arger

problems can be designed to Bayes-optimality than what is commonly believed.
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Deterministic Procedures

e Problem? Deterministic procedures are not suitable to
Implement in many clinical trials because
randomisation is required to avoid several sources of
bias

e Therefore, we need to modity the DP procedure by
forcing actions to be randomised

20
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Deterministic Procedures

Biometrika (2007), 94, 3, pp. 673—-689 doi:10.1093/biomet/asm049
© 2007 Biometrika Trust Advance Access publication 5 August 2007
Printed in Great Britain
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Optimal adaptive randomized designs for clinical trials
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SUMMARY

Optimal decision-analytic designs are deterministic. Such designs are appropriately
criticized in the context of clinical trials because they are subject to assignment bias.
On the other hand, balanced randomized designs may assign an excessive number of
patients to a treatment arm that is performing relatively poorly. We propose a compromise
between these two extremes, one that achieves some of the good characteristics of both.
We introduce a constrained optimal adaptive design for a fully sequential randomized
clinical trial with k arms and n patients. An r-design is one for which, at each allocation,
each arm has probability at least » of being chosen, 0 < r < 1/k. An optimal design
among all r-designs is called r-optimal. An r;-design is also an rp-design if r; > ry. A




Randomised DP

e Action 1: intervention C is allocated with probability p
e Action 2: intervention D is allocated with probability p

e The expected total number of successes under Action 1

Vi(2) = p- F(2) + (1= p) - Fro(2)

e The objective function becomes

Vin(z) = max {V;(z), V?n(z)}

e Lower biases, but lower controllability

22
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Randomised DP

e Problems? After running simulations, we found:

> this procedure is very underpowered for high p
> in some of the runs, all subjects were allocated to
only one of interventions

e This means we cannot be confident about the results
e ...we cannot calculate important performance measures

e T herefore, we lower-limit the number of observations
on each intervention
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Constrained Randomised DP

e We modify the optimal randomised DP procedure by
adding a constraint to ensure that we obtain > /
observations from each intervention

e To do this, we assign a large penalty to every terminal
state that has < £ observations on an arm

e The undesirable states will now be avoided (as much
as possible) by the procedure

e We suggested p = 0.9 and £ = 0.15T

> Note that 0.501" corresponds to 1:1
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MSE

Best: 0.017 2N S

Comparison

Absolute Average Bias
Best: 0.001

Patient Benefit (%)
Best: 90.5
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Comparison 1' = 148: Hy: 0 =60p = 0.3

z-test F-test EPASA (SD)

0.95/0.98  0.91/0.95
EFR 0.051/0.021 0.058/0.024 0.500 (0.041)
LFF 0.054/0.023 0.057/0.024 0.500 (0.029)
2UCB 0.063/0.031 0.068/0.033 0.500 (0.101)
0.5UCB 0.089/0.049 0.095/0.050 0.500 (0.199)
0.18UCB | 0.091/0.047 0.101/0.047 0.500 (0.308)
0UCB 0.001/0.000 0.001/0.000 0.500 (0.483)
37C+0.8RDP | 0.063/0.030 0.068/0.031 0.500 (0.181)
15C+0.95RDP | 0.091/0.048 0.101/0.049 0.500 (0.298)
0.99RDP | 0.077/0.031 0.097/0.034 0.500 (0.344)
37C+DP 0.063/0.030 0.068/0.031 0.500 (0.209)
15C+DP | 0.092/0.047 0.105/0.047 0.500 (0.313)
7C+DP 0.089/0.029 0.116/0.032 0.500 (0.343)
DP 0.073/0.026 0.094/0.028 0.500 (0.352)
WI 0.065/0.022 0.090/0.024 0.500 (0.363)
ORACLE 0.000/0.000 0.000/0.000 0.500 (0.500)



Comparison 7' = 148:
Hi:0=03,0p=0.5

z-test F-test EPASA (SD) ENS (SD)
00.95/0.98  0.91/0.95

EFR 0.805/0.676 0.755/0.589 0.500 (0.041) 59.200 (5.960)
LFF 0.804/0.672 0.746/0.567 0.586 (0.033) 61.735 (6.199)
2UCB 0.786/0.637 0.707/0.497 0.727 (0.077) 65.915 (6.543)
0.5UCB 0.650/0.442 0.547/0.308 0.838 (0.103) 69.219 (6.894)
0.18UCB | 0.356/0.158 0.308/0.104 0.877 (0.163) 70.356 (7.740)
OUCB 0.012/0.007 0.011/0.004 0.692 (0.445) 64.883 (14.51)
37C10.8RDP | 0.746/0.600 0.663/0.478 0.714 (0.060) 65.527 (6.240)
15C+0.95RDP | 0.580/0.412 0.504/0.314 0.840 (0.118) 69.270 (7.021)
0.99RDP | 0.323/0.170 0.308/0.123 0.882 (0.166) 70.504 (7.849)
37C1DP | 0.715/0.575 0.634/0.461 0.734 (0.050) 66.128 (6.159)
15C+DP | 0.536/0.376 0.467/0.288 0.854 (0.114) 69.666 (6.962)
7C+DP 0.411/0.250 0.369/0.219 0.880 (0.151) 70.441 (7.590)
DP 0.263/0.116 0.262/0.078 0.888 (0.172) 70.696 (7.964)
WI 0.233/0.102 0.240/0.069 0.887 (0.184) 70.667 (8.185)
ORACLE 0.000/0.000 0.000/0.000 1.000 (0.000) 74.000 (6.083)
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Conclusion

e Many important contributions from a number of
disciplines over 90 years, but still not clear what the
“best” procedure is

> and this i1s just the simplest problem variant!
e Many myths (see Jacko (2019b))

e Randomised procedures in biostatistics — a whole new
world

e Unclear computational limits of DP and
Gittins/Whittle index



Thank you for your attention

Dakujem za Va3u pozornost
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Links

e Jacko (2019b):

e Jacko (2019a):

e BinaryBandit Julia package:

e R ShinyApp:

e Group on Optimal Adaptive Learning (G.O.A.L.):

33


https://arxiv.org/pdf/1906.10173.pdf
https://eprints.lancs.ac.uk/id/eprint/136340/1/Jacko2019_binarybandit_wp.pdf
https://eprints.lancs.ac.uk/id/eprint/136340/1/Jacko2019_binarybandit_wp.pdf
https://github.com/PeterJacko/BinaryBandit
https://peterjacko.shinyapps.io/binarybandit-app/
http://www.lancaster.ac.uk/staff/jacko/goal/
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