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Restless Bandits in My Research

• 38/77 publications in my Google Scholar profile

▷ Scheduling in (time-varying) wireless networks

▷ Congestion avoidance in the Internet

▷ Scheduling in systems with abandonments

▷ Dynamic promotion in marketing

▷ Allocation of funding to prevent company defaults

▷ Dynamic allocation of failing assets

▷ Adaptive treatment allocation in clinical trials

▷ Deadlines, finite horizon

▷ Arms with absorbing states, no recurrent states

▷ New arms arrivals, control arms

▷ Heterogeneous resource requirements
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Multi-Armed Bandit Problem

• A decision-making problem addressing the omnipresent

trade-off between learning and earning

▷ A heuristic long known to gamblers: stay on a

success, switch on a failure

▷ Formulated by scientists in 1930s/40s/50s

▷ Classic problem in applied probability, addressed by

methods from statistics, OR, machine learning, etc.

▷ “Sir, the multi-armed bandit problem is not of such a

nature that it can be solved”

▷ Variants motivated by applications in health care,

economics, marketing, telecommunications, etc.
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Randomised Controlled Trials

• The gold standard design for 2 arms:

▷ equal (50% vs 50%) fixed randomisation (EFR)

▷ in use since 1948 (advocated since Hill 1937)

• Its main goal is to learn about intervention

effectiveness with a view to prioritise after-trial subjects

▷ the intervention effect estimate is unbiased and

unaffected by time trends (if equal on both arms)

▷ if approved, future subjects are, say, 95% confident

that the novel intervention is better than the control

• A half of trial subjects gets the inferior intervention
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Randomised Controlled Trials

• Frequentist statistical testing based on EFR is a

widespread state-of-the-art approach in the design of

experiments, under different names:

▷ randomised controlled trial in biostatistics

▷ between-group design in social sciences

▷ A/B testing in digital marketing

• However, “controlled” means to compare the novel

intervention against a control intervention under the

circumstances of the same trial

▷ departing from EFR may improve on other objectives

than estimation
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Bayesian Randomised Controlled Trials

“...there can be no objection to the use of data,

however meagre, as a guide to action required before

more can be collected ... Indeed, the fact that such

objection can never be eliminated entirely—no

matter how great the number of

observations—suggested the possible value of seeking

other modes of operation than that of taking a large

number of observations before analysis or any

attempt to direct our course... This would be

important in cases where either the rate of

accumulation of data is slow or the individuals

treated are valuable, or both.”
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Bayesian Randomised Controlled Trials

• Proposed in Thompson (1933) (pre-dates Hill 1937)

• The goal is to provide higher benefit to both in-trial

subjects and after-trial subjects

▷ as opposed to the EFR’s learning goal of reliable

intervention effect estimation

• It is done by deciding the allocation, i.e., the

randomisation probabilities for every subject (or for a

group of subjects)

▷ response-adaptive: decisions based on the responses

accumulated so far, using Bayesian updating
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Patient-Centric Clinical Trials

• Focusing on patient benefit

• Important because healing patients is the ultimate goal

of new treatment development

▷ optimally solving learning/healing trade-off

▷ both learning and healing takes place during the trial
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Bernoulli Bandit Model

• Finite horizon: T sequentially arriving subjects

t = 1, ..., T

• Two-armed: intervention k ∈ {C,D} for each subject

• Binary endpoints: success (1) or failure (0)

• θk is the unknown success probability of intervention k

• Subject t’s response from intervention k is

Xk,t ∼ Bernoulli(θk)
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Bayesian Approach

• Replace each θk by random variable θ̃k, whose

distribution is updated over the trial

• Prior Distribution: θ̃k ∼ Beta(sk(0), fk(0)) where we

take sk(0) = fk(0) = 1 (uninformative; uniform distr.)

• Posterior Distribution: After observing sk (fk)

successes (failures) on intervention k by time t, the

posterior distribution is Beta distribution (by

conjugacy)

θ̃k ∼ Beta(sk(t), fk(t))

where sk(t) = sk(0) + sk, fk(t) = fk(0) + fk
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DP Procedure

• We use dynamic programming (DP) to obtain an

optimal adaptive intervention allocation sequence

• Bayes-optimal means maximising the Bayes-expected

total number of successes (patient benefit) in the trial

• Specifically, we use backward recursion algorithm
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DP Procedure: Computational Tractability

Publication T Tmax SW, HW, RAM

Steck (1964) 25 N/A N/A, UNIVAC 1105, 54 kB

Yakowitz (1969) 5 N/A Fortran, N/A, N/A

Berry (1978) 100 N/A Basic (?), Atari (?), N/A

Ginebra and Clayton (1999) 150 180 N/A, N/A, N/A

Hardwick et al. (2006) 100 200 N/A, N/A, N/A

Ahuja and Birge (2016) 96 240 N/A, Mac 4GB

Williamson et al. (2017) 100 215 R, PC, 16GB

Villar (2018) 100 N/A Matlab, PC, N/A

Kaufmann (2018) 70 N/A N/A, N/A, N/A
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Frequentist UCB Index Rules

• Arm with highest upper confidence bound gets priority

▷ either it has high sample mean

▷ or it has high uncertainty around the mean

• Many variants, computationally notably different

• α-UCB (originally α = 2 in Auer et al. (2002)):

sk(t)

sk(t) + fk(t)
+

√
α · ln(t+ 1)

sk(t) + fk(t)

▷ currently theoretical performance bounds for α > 1

▷ α = 1 often used in computational papers

▷ α = 0.18 found numerically as best performing
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Procedures: Frequentist Regret
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Deterministic Procedures

• Problem? Deterministic procedures are not suitable to

implement in many clinical trials because

randomisation is required to avoid several sources of

bias

• Therefore, we need to modify the DP procedure by

forcing actions to be randomised
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Randomised DP

• Action 1: intervention C is allocated with probability p

• Action 2: intervention D is allocated with probability p

• The expected total number of successes under Action 1

V1
m(z) = p · FC

m(z) + (1− p) · FD
m(z)

• The objective function becomes

Vm(z) = max
{
V1
m(z), V2

m(z)
}

• Lower biases, but lower controllability
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Randomised DP

• Problems? After running simulations, we found:

▷ this procedure is very underpowered for high p

▷ in some of the runs, all subjects were allocated to

only one of interventions

• This means we cannot be confident about the results

• ...we cannot calculate important performance measures

• Therefore, we lower-limit the number of observations

on each intervention
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Constrained Randomised DP

• We modify the optimal randomised DP procedure by

adding a constraint to ensure that we obtain ≥ ℓ

observations from each intervention

• To do this, we assign a large penalty to every terminal

state that has < ℓ observations on an arm

• The undesirable states will now be avoided (as much

as possible) by the procedure

• We suggested p = 0.9 and ℓ = 0.15T

▷ Note that 0.50T corresponds to 1:1
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Constrained Randomised DP
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Comparison
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Comparison T = 148: H0 : θC = θD = 0.3

z-test F-test EPASA (SD)
0.95/0.98 0.91/0.95

EFR 0.051/0.021 0.058/0.024 0.500 (0.041)
LFF 0.054/0.023 0.057/0.024 0.500 (0.029)
2UCB 0.063/0.031 0.068/0.033 0.500 (0.101)
0.5UCB 0.089/0.049 0.095/0.050 0.500 (0.199)
0.18UCB 0.091/0.047 0.101/0.047 0.500 (0.308)
0UCB 0.001/0.000 0.001/0.000 0.500 (0.483)

37C+0.8RDP 0.063/0.030 0.068/0.031 0.500 (0.181)
15C+0.95RDP 0.091/0.048 0.101/0.049 0.500 (0.298)

0.99RDP 0.077/0.031 0.097/0.034 0.500 (0.344)
37C+DP 0.063/0.030 0.068/0.031 0.500 (0.209)
15C+DP 0.092/0.047 0.105/0.047 0.500 (0.313)
7C+DP 0.089/0.029 0.116/0.032 0.500 (0.343)

DP 0.073/0.026 0.094/0.028 0.500 (0.352)
WI 0.065/0.022 0.090/0.024 0.500 (0.363)

Oracle 0.000/0.000 0.000/0.000 0.500 (0.500)
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Comparison T = 148:
H1 : θC = 0.3 , θD = 0.5

z-test F-test EPASA (SD) ENS (SD)
00.95/0.98 0.91/0.95

EFR 0.805/0.676 0.755/0.589 0.500 (0.041) 59.200 (5.960)
LFF 0.804/0.672 0.746/0.567 0.586 (0.033) 61.735 (6.199)
2UCB 0.786/0.637 0.707/0.497 0.727 (0.077) 65.915 (6.543)
0.5UCB 0.650/0.442 0.547/0.308 0.838 (0.103) 69.219 (6.894)
0.18UCB 0.356/0.158 0.308/0.104 0.877 (0.163) 70.356 (7.740)
0UCB 0.012/0.007 0.011/0.004 0.692 (0.445) 64.883 (14.51)

37C+0.8RDP 0.746/0.600 0.663/0.478 0.714 (0.060) 65.527 (6.240)
15C+0.95RDP 0.580/0.412 0.504/0.314 0.840 (0.118) 69.270 (7.021)

0.99RDP 0.323/0.170 0.308/0.123 0.882 (0.166) 70.504 (7.849)
37C+DP 0.715/0.575 0.634/0.461 0.734 (0.050) 66.128 (6.159)
15C+DP 0.536/0.376 0.467/0.288 0.854 (0.114) 69.666 (6.962)
7C+DP 0.411/0.250 0.369/0.219 0.880 (0.151) 70.441 (7.590)

DP 0.263/0.116 0.262/0.078 0.888 (0.172) 70.696 (7.964)
WI 0.233/0.102 0.240/0.069 0.887 (0.184) 70.667 (8.185)

Oracle 0.000/0.000 0.000/0.000 1.000 (0.000) 74.000 (6.083)
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Conclusion

• Many important contributions from a number of

disciplines over 90 years, but still not clear what the

“best” procedure is

▷ and this is just the simplest problem variant!

• Many myths (see Jacko (2019b))

• Randomised procedures in biostatistics — a whole new

world

• Unclear computational limits of DP and

Gittins/Whittle index



32

Thank you for your attention

Ďakujem za Vašu pozornošt
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Links

• Jacko (2019b): https://arxiv.org/pdf/1906.10173.pdf

• Jacko (2019a): https://eprints.lancs.ac.uk/id/eprint/

136340/1/Jacko2019_binarybandit_wp.pdf

• BinaryBandit Julia package:

https://github.com/PeterJacko/BinaryBandit

• R ShinyApp:

https://peterjacko.shinyapps.io/binarybandit-app/

• Group on Optimal Adaptive Learning (G.O.A.L.):

http://www.lancaster.ac.uk/staff/jacko/goal/

https://arxiv.org/pdf/1906.10173.pdf
https://eprints.lancs.ac.uk/id/eprint/136340/1/Jacko2019_binarybandit_wp.pdf
https://eprints.lancs.ac.uk/id/eprint/136340/1/Jacko2019_binarybandit_wp.pdf
https://github.com/PeterJacko/BinaryBandit
https://peterjacko.shinyapps.io/binarybandit-app/
http://www.lancaster.ac.uk/staff/jacko/goal/
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