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Markovian Bandits with Switching Penalties

Each arm is an independent Markov machine

Playing the chosen arm Ñ payoff & transition

Switching between arms Ñ penalties

Goal: maximizing the total expected reward obtained over an infinite
horizon while minimizing the total switching penalty
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Solution Methods

One solution method: Model as a Markov decision process (MDP)
and apply Markov decision theory to find an optimal policy Ñ

computationally challenging

Gittins and Jones (1974): Provide an optimal solution for the
problem by proposing decomposition to each arm and an index policy
approach

Banks and Sundaram (1994): In the presence of switching costs, it
is not possible to define an index for each arm such that the resulting
strategy always produces the maximized payoffs.

Asawa and Teneketzis (1996): Introduce an index-based heuristic.

There is no research on risk-averse bandits with switching costs.
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Risk-Averse Optimization
Risk-neutral opt.: highest expected total reward
Risk-averse opt.: high expected total reward & low reward variability

Example 1 (Clinical Trials)
Optimal risk-neutral treatment: significant variability in patients’
satisfaction with the treatment (side effects)
Optimal risk-averse treatment: maybe not the most effective on
average but more reliable and consistent

Example 2 (Deploying Ambulances During Emergency)
Optimal risk-neutral plan: minimizing the average of arrival times to
possible calls
Optimal risk-averse plan: also minimizing the variance of response
times, resulting in a greater number of saved lives
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Incorporating Risk into the Markovian Bandits

1 Concave utility functions
§ Denardo et al. (2007) & Denardo et al. (2013): exponential utility

§ Drawback:
‹ hard to state a suitable utility function with regard to the level of

risk-aversion
‹ hard to interpret the resulting solutions

2 Coherent risk measures
§ Does not inherit the challenges of using utility functions

§ Malekipirbazari and Çavuş (2021) & Malekipirbazari and Çavuş (2024):

‹ first-order mean-semideviation
‹ mean-CVaR
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Problem Description

Converting the problem into minimization Ñ considering the negative of
rewards (interpreted as costs)

Each arm i is a Markov chain with a finite state space X i , i P K with
K “ t1, 2, . . . , Ku

At step t P N, an action ut “ ru1
t u2

t . . . uK
t sT is applied:

‚ ui
t P t0, 1u Ñ the action applied to arm i P K

‚ ui
t “ 1: arm i is played at step t

‚ ui
t “ 0: arm i is not played at step t

c ipx i, ui, y iq: Cost incurred by arm i under action ui by x i Ñ y i

The switching cost s “ rs1s2 ¨ ¨ ¨ sK sT is set to be finite and non-negative,
where s i represents the cost incurred by switching to arm i P K.

A stationary (Markov) policy π : X Ñ t0, 1uK

‚ ut “ πpxtq: both denote the decision to be taken at state xt P X
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One-Step Conditional Risk Measure

ρt : Zt`1 Ñ Zt , t P t1, . . . , T u satisfying the following axioms is defined
as one-step conditional risk measure:

(A1) ρtpαZ `p1´αqW q ď αρtpZ q`p1´αqρtpW q, @α P p0, 1q, Z , W P Zt`1

(A2) if Z ĺ W , then ρtpZ q ď ρtpW q, @Z , W P Zt`1

(A3) ρtpZ ` W q “ Z ` ρtpW q, @Z P Zt , W P Zt`1

(A4) ρtpαZ q “ αρtpZ q, @Z P Zt`1, α ě 0
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Two Important Conditional Risk Measures

1 First-order mean-semideviation:

ρtpZt`1q “ ErZt`1|Fts ` κErpZt`1 ´ ErZt`1|Ftsq`|Fts,

where κ P r0, 1s and paq` :“ maxta, 0u for a P R

2 Mean-average value-at-risk (mean-AVaR):

ρtpZt`1q “ λErZt`1|Fts ` p1 ´ λqAVaRαpZt`1|Ftq,

where

AVaRαpZt`1|Ftq “ inf
ηPZt

"

η `
1

1 ´ α
E rpZt`1 ´ ηq`|Fts

*

,

and α P p0, 1q and λ P r0, 1s
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Dynamic Risk Measures

Definition
A dynamic risk measure is a sequence of one-step conditional risk
measures.

ϱβ
1,T pZ2, . . . , ZT `1q :“

ρ1

´

Z2 ` ρ2

´

βZ3 ` ρ3

´

β2Z4 ` ¨ ¨ ¨ ` ρT

´

βT ´1ZT `1

¯

. . .
¯¯¯

ϱβpZ2, Z3, Z4, . . . q :“ lim
T Ñ8

ϱβ
1,T pZ2, Z3, . . . , ZT `1q
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Risk-Averse MAB Formulation with Switching Costs

Evaluation of the risk of the cost sequences cpxt , ut , xt`1q P Zt`1,
t P N in the play with non-negative switching cost s, for policy π and
initial state of x1 P X :

Rπpx1, sq “ ϱβ
`

cpx1, u1, x2q ` sT u1, cpx2, u2, x3q ` sT u21u2‰u1 ,

cpx3, u3, x4q ` sT u31u3‰u2 , . . .
˘

Rpx1, sq “ min
πPΠ

Rπpx1, sq

Π: the class of stationary admissible policies for the problem

Ruszczyński (2010, Theorem 4)
An infinite horizon stationary Markov decision process with dynamic risk
measures has a stationary optimal policy.
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Properties of Risk-Averse Bandits with Switching Costs

1 Switching Costs in Risk-Averse Setting:
Every risk-averse bandit problem in which switching away from and
switching to an arm incurs costs has an equivalent risk-averse bandit
problem in which only switching to an arm incurs costs.

2 Structure of the Optimal Policy:
There is no optimal index for the risk-averse bandits with switching
costs.
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Index Heuristics for Risk-Averse Bandits

Definition 3 (Malekipirbazari and Çavuş (2021))

For i P K, the risk-averse index (RAI) for each state x i
1 P X i is given by:

ν ipx i
1q :“ sup

τ i ą1

ϱβ
1,τ i ´1

´

c ipx i
1, 1, x i

2q, c ipx i
2, 1, x i

3q, . . . , c ipx i
τ i ´1, 1, x i

τ i q

¯

ϱβ
1,τ i ´1 p´1, ´1, . . . , ´1q

.
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Definition 4
For i P K, the risk-averse switching indices (RASI) for each state x i

1 P X i are
given by:

µi px i
1, 1q :“ sup

τ i ą1

ϱβ
1,τ i ´1

`

c i px i
1, 1, x i

2q, c i px i
2, 1, x i

3q, . . . , c i px i
τ i ´1, 1, x i

τ i q
˘

ϱβ
1,τ i ´1 p´1, ´1, . . . , ´1q

(1)

and

µi px i
1, 0q :“ sup

τ i ą1

ϱβ
1,τ i ´1

`

s i ` c i px i
1, 1, x i

2q, c i px i
2, 1, x i

3q, . . . , c i px i
τ i ´1, 1, x i

τ i q
˘

ϱβ
1,τ i ´1 p´1, ´1, . . . , ´1q

. (2)

Definition 5

Select the arm with the highest index value, where the index values are
computed for the states in the immediately played arm by (1) and for the
states in the other arms by (2).
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RASI in Restricted Environments

1 Single-Armed Bandit:
In the multiarmed bandits comprised of single-state arms with
switching penalties, the index policy described in Definition 5 is
optimal.

2 One-Armed Bandit:
The risk-averse one-armed bandit problem with switching costs is
indexable with the risk-averse allocation indices introduced in
Definition 5.

3 Risk-Neutral Bandits:
Decisions about the allocation need to be made only at those steps
when the index of the arm that is played is achieved.
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Computational Experiments

Three-armed bandits each with four states

1000 randomly generated problem instances

Arm transition probabilities sampled from normalized Up0, 1q

Costs sampled from truncated normal distribution
NpUp´6, ´5q, σ P t0.01, 0.5, 1.0uq with β P t0.50, 0.75, 0.90u

Switching costs sampled from truncated normal distribution
Nps, 0.1sq with s P t0, 2, 4u
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(Optimality Percentage) (Average of Maximum Suboptimality)
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Future Works

1 The conjecture

2 Discussion on the case of the risk-averse bandits where the first
switching cost (set-up cost) and remaining switching costs are not the
same.

3 Discussion on the case of the risk-averse bandits with switching
delays.
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Example of the Optimal Policy
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