Online Learning in Rested and Restless Bandits
Workshop on restless bandits, index policies and applications in reinforcement learning

Cem Tekin
Bilkent University

November 20, 2023
Background

- I worked on rested and restless bandits during my PhD (2008-2013)
 - U Michigan
 - Demos Teneketsiz, Mingyan Liu, Ambuj Tewari..
- The talk is mainly about my PhD work:
- Remarkable progress in the field since then
k-armed i.i.d. bandit problem

- k arms with fixed and unknown reward distributions (frequentist setting)

\[\nu = \nu_1 \times \nu_2 \times \ldots \times \nu_k \]

- Unknown expected arm rewards:

\[\mu_1 \geq \mu_2 \geq \ldots \geq \mu_k \]

- n rounds of sequential interaction. At round t:
 - Learner plays arm $A_t \in [k]$
 - Learner observes noisy reward $X_{A_t}(t) \sim \nu_{A_t}$
Regret for i.i.d. bandit problem

- Goal: For a given horizon n

\[
\text{Maximize } \mathbb{E} \left[\sum_{t=1}^{n} X_{A_t}(t) \right]
\]

- Optimal policy when μ_1, \ldots, μ_k are known:

 Always choose arm 1

- Minimize frequentist regret:

\[
R(n) = n\mu_1 - \mathbb{E} \left[\sum_{t=1}^{n} X_{A_t}(t) \right]
\]
UCB algorithm for i.i.d. bandit [Auer et al. 2002]

- Any meaningful policy samples suboptimal arm \(i \) \(\Omega(\log n) \) times [Lai & Robbins, 1985]

Algorithm 1: UCB

```plaintext
for \( t = 1, 2, \ldots \) do
  1. Compute UCB indices: \( \text{UCB}_i(t) = \hat{\mu}_i(t) + \sqrt{\frac{\alpha \log(t-1)}{T_i(t)}} \)
  2. Play arm \( A_t = \arg\max_{i \in [k]} \text{UCB}_i(t) \)
end
```

\(\alpha \): exploration constant; \(T_i(t) \): number of plays of arm \(i \) before \(t \); \(\hat{\mu}_i(t) \): sample mean reward of arm \(i \)

Properties of UCB:
- Achieves \(O(\log n) \) instance-dependent regret (order-optimal)
- Anytime (no need to know \(n \))
- Compute & memory efficient
Any meaningful policy samples suboptimal arm \(i \) \(\Omega(\log n) \) times [Lai & Robbins, 1985]

Algorithm 2: UCB

```plaintext
for \( t = 1, 2, \ldots \) do

1. Compute UCB indices: \( \text{UCB}_i(t) = \hat{\mu}_i(t) + \sqrt{\frac{\alpha \log(t-1)}{T_i(t)}} \)

2. Play arm \( A_t = \arg \max_{i \in [k]} \text{UCB}_i(t) \)

end
```

\(\alpha \): exploration constant; \(T_i(t) \): number of plays of arm \(i \) before \(t \); \(\hat{\mu}_i(t) \): sample mean reward of arm \(i \)

Properties of UCB:
- Achieves \(O(\log n) \) instance-dependent regret (order-optimal)
- Anytime (no need to know \(n \))
- Compute & memory efficient
Any meaningful policy samples suboptimal arm $i \Omega(\log n)$ times [Lai & Robbins, 1985]

Algorithm 3: UCB

\begin{align*}
\text{for } t = 1, 2, \ldots \text{ do} \\
1. \text{Compute UCB indices: } UCB_i(t) &= \hat{\mu}_i(t) + \sqrt{\frac{\alpha \log(t-1)}{T_i(t)}} \\
2. \text{Play arm } A_t = \arg \max_{i \in [k]} UCB_i(t) \\
\end{align*}
\[
\alpha: \text{ exploration constant; } T_i(t): \text{ number of plays of arm } i \text{ before } t; \hat{\mu}_i(t): \text{ sample mean reward of arm } i
\]

Properties of UCB:
- Achieves $O(\log n)$ instance-dependent regret (order-optimal)
- Anytime (no need to know n)
- Compute & memory efficient
k-armed rested bandit problem

Arm \(i\):
- Finite state space \(S_i\)
- Reward = state (noiseless observations)
- When not played, state remains **frozen**
- When played, state transitions according to **unknown** \(P_i\)
- When played, an **irreducible, aperiodic** Markov chain

![Diagram of arm transitions](image-url)
Regret for rested bandit problem

- Maximize $\mathbb{E} \left[\sum_{t=1}^{n} X_{A_t}(t) \middle| x_0 \right]$ over horizon n?

- Optimal policy when P_is are known? **non-stationary, intractable**

- Minimize the following regret?

$$R(n) = \mathbb{E} \left[\sum_{t=1}^{n} X_{A_t^*}(t) \middle| x_0 \right] - \mathbb{E} \left[\sum_{t=1}^{n} X_{A_t}(t) \middle| x_0 \right]$$

Too ambitious!
Regret for rested bandit problem

- Maximize $\mathbb{E} \left[\sum_{t=1}^{n} X_{A_t}(t) \middle| x_0 \right]$ over horizon n?
- Optimal policy when P_is are known? **non-stationary, intractable**
- Minimize the following regret?

$$R(n) = \mathbb{E} \left[\sum_{t=1}^{n} X_{A^*_t}(t) \middle| x_0 \right] - \mathbb{E} \left[\sum_{t=1}^{n} X_{A_t}(t) \middle| x_0 \right]$$

Too ambitious!
Regret for rested bandit problem

- Maximize $\mathbb{E}\left[\sum_{t=1}^{n} X_{A_t}(t) \bigg| x_0\right]$ over horizon n?
- Optimal policy when P_is are known? non-stationary, intractable
- Minimize the following regret?

$$R(n) = \mathbb{E}\left[\sum_{t=1}^{n} X_{A^*_t}(t) \bigg| x_0\right] - \mathbb{E}\left[\sum_{t=1}^{n} X_{A_t}(t) \bigg| x_0\right]$$

optimal policy

learner's policy

Too ambitious!
Regret for rested bandit problem

- Maximize $\mathbb{E} \left[\sum_{t=1}^{n} X_{A_t}(t) \bigg| x_0 \right]$ over horizon n?
- Optimal policy when P_is are known? **non-stationary, intractable**
- Minimize the following regret?

$$R(n) = \mathbb{E} \left[\sum_{t=1}^{n} X_{A_t^*}(t) \bigg| x_0 \right] - \mathbb{E} \left[\sum_{t=1}^{n} X_{A_t}(t) \bigg| x_0 \right]$$

Too ambitious!
Let’s try something else

- For $0 < \beta < 1$, Maximize $\mathbb{E} \left[\sum_{t=1}^{\infty} \beta^{t-1} X_{A_t}(t) \bigg| x_0 \right]$?

- Optimal policy when P_1, \ldots, P_k are known? **Gittins index policy**

- Minimize the following regret?

$$R(n) = \mathbb{E} \left[\sum_{t=1}^{n} \beta^{t-1} X_{A^*_t}(t) \bigg| x_0 \right] - \mathbb{E} \left[\sum_{t=1}^{n} \beta^{t-1} X_{A_t}(t) \bigg| x_0 \right]$$

Not enough time to learn!
Alternative regret for rested bandit problem

Let’s try something else

- For $0 < \beta < 1$, Maximize $\mathbb{E}\left[\sum_{t=1}^{\infty} \beta^{t-1} X_{A_t}(t) \mid x_0\right]$?
- Optimal policy when P_1, \ldots, P_k are known? Gittins index policy
- Minimize the following regret?

$$R(n) = \mathbb{E}\left[\sum_{t=1}^{n} \beta^{t-1} X_{A^*_t}(t) \mid x_0\right] - \mathbb{E}\left[\sum_{t=1}^{n} \beta^{t-1} X_{A_t}(t) \mid x_0\right]$$

Gittins index policy

learner’s policy

Not enough time to learn!
Alternative regret for rested bandit problem

Let’s try something else

- For $0 < \beta < 1$, Maximize $\mathbb{E} \left[\sum_{t=1}^{\infty} \beta^{t-1} X_{A_t}(t) \bigg| x_0 \right]$?
- Optimal policy when P_1, \ldots, P_k are known? **Gittins index policy**
- Minimize the following regret?

$$R(n) = \mathbb{E} \left[\sum_{t=1}^{n} \beta^{t-1} X_{A_t}(t) \bigg| x_0 \right] - \mathbb{E} \left[\sum_{t=1}^{n} \beta^{t-1} X_{A_t}(t) \bigg| x_0 \right]_{\text{Gittins index policy}} - \mathbb{E} \left[\sum_{t=1}^{n} \beta^{t-1} X_{A_t}(t) \bigg| x_0 \right]_{\text{learner’s policy}}$$

Not enough time to learn!
Alternative regret for rested bandit problem

Let’s try something else

- For $0 < \beta < 1$, Maximize $\mathbb{E} \left[\sum_{t=1}^{\infty} \beta^{t-1} X_{A_t}(t) \bigg| x_0 \right]$?

- Optimal policy when P_1, \ldots, P_k are known? Gittins index policy

- Minimize the following regret?

$$R(n) = \mathbb{E} \left[\sum_{t=1}^{n} \beta^{t-1} X_{A^*_t}(t) \bigg| x_0 \right] - \mathbb{E} \left[\sum_{t=1}^{n} \beta^{t-1} X_{A_t}(t) \bigg| x_0 \right]$$

Gittins index policy learner’s policy

Not enough time to learn!
Weak regret for rested bandit problem

Let's try something simpler

- Let $\{\pi_i(x)\}_{x \in S_i}$ represent the unique stationary distribution of arm i

 $$\mu_i := \lim_{n \to \infty} \frac{1}{n} \mathbb{E} \left[\sum_{t=1}^{n} X_i(t) \mid x_0 \right] = \sum_{x \in S_i} x \pi_i(x)$$

- Assume $\mu_1 \geq \mu_2 \geq \ldots \geq \mu_k$

- Optimal policy when P_1, \ldots, P_k are known? Since arms are rested and ergodic, as $n \to \infty$, for the optimal policy $A^*_t = 1$ for t large.

- Minimize the weak regret

 $$R_w(n) = \underbrace{n \mu_1}_{\text{proxy for the opt}} - \mathbb{E} \left[\sum_{t=1}^{n} X_{A_t}(t) \mid x_0 \right]$$

 learner’s policy
Weak regret for rested bandit problem

Let’s try something simpler

- Let \(\{\pi_i(x)\}_{x \in S_i} \) represent the unique stationary distribution of arm \(i \)

\[
\mu_i := \lim_{n \to \infty} \frac{1}{n} \mathbb{E} \left[\sum_{t=1}^{n} X_i(t) \right | x_0] = \sum_{x \in S_i} x \pi_i(x)
\]

- Assume \(\mu_1 \geq \mu_2 \geq \ldots \geq \mu_k \)

- Optimal policy when \(P_1, \ldots, P_k \) are known? Since arms are rested and ergodic, as \(n \to \infty \), for the optimal policy \(A^*_t = 1 \) for \(t \) large.

- Minimize the weak regret

\[
R_w(n) = n \mu_1 - \mathbb{E} \left[\sum_{t=1}^{n} X_{A^*_t}(t) \right | x_0] = n \mu_1 - \mathbb{E} \left[\sum_{t=1}^{n} X_{A_t}(t) \right | x_0]
\]
Weak regret for rested bandit problem

Let's try something simpler

- Let \(\{\pi_i(x)\}_{x \in S_i} \) represent the unique stationary distribution of arm \(i \)

\[
\mu_i := \lim_{n \to \infty} \frac{1}{n} \mathbb{E} \left[\sum_{t=1}^{n} X_i(t) \bigg| x_0 \right] = \sum_{x \in S_i} x \pi_i(x)
\]

- Assume \(\mu_1 \geq \mu_2 \geq \ldots \geq \mu_k \)

- Optimal policy when \(P_1, \ldots, P_k \) are known? Since arms are rested and ergodic, as \(n \to \infty \), for the optimal policy \(A_t^* = 1 \) for \(t \) large.

- Minimize the weak regret

\[
R_w(n) = \underbrace{n \mu_1}_{\text{proxy for the opt}} - \mathbb{E} \left[\sum_{t=1}^{n} X_{A_t}(t) \bigg| x_0 \right]
\]
Algorithm 4: UCB-rested

for $t = 1, 2, \ldots$ do

1. Compute UCB indices: $UCB_i(t) = \hat{\mu}_i(t) + \sqrt{\frac{\alpha \log(t-1)}{T_i(t)}}$

2. Play arm $A_t = \arg\max_{i \in [k]} UCB_i(t)$

end

α: exploration constant; $T_i(t)$: number of plays of arm i before t; $\hat{\mu}_i(t)$: sample mean reward of arm i

Difference from i.i.d. UCB?
Choice of α that yields $O(\log n)$ instance-dependent regret depends on state space cardinality and eigenvalue gap of transition matrices.
Instance-dependent regret bound

Conditions for the regret bound:
- All arms are finite-state, irreducible, aperiodic Markov chains with P_is having irreducible multiplicative symmetrizations (MS)
- For any state x of any arm, $0 < x < 1$
- ϵ_i: eigenvalue gap of MS of P_i
- $\epsilon_{\text{min}} = \min_i \epsilon_i$
- $S_{\text{max}} = \max_{i \in [k]} |S_i|$

Theorem

When UCB is run with $\alpha = O\left(\frac{S_{\text{max}}^2}{\epsilon_{\text{min}}}\right)$, we have

$$R_w(n) = O\left(\frac{S_{\text{max}}^2}{\epsilon_{\text{min}}} \sum_{i: \mu_i < \mu_1} \frac{\log n}{\mu_1 - \mu_i}\right)$$
Learning policies that compete with Gittins index?

A recent paper by [Gast et al. 2022]¹

- Discount factor $\beta < 1$
- Episodic setting with n episodes and geometrically distributed episode lengths
- Computationally tractable algorithms with Bayesian strong regret bound of $O(S_{\text{max}} \sqrt{nK})$

¹ Learning algorithms for Markovian bandits: Is posterior sampling more scalable than optimism?, TMLR, 2022
k-armed restless bandit problem

Arm i:

- All assumptions same as rested **except**:
 - When not played, state transitions *arbitrarily*
 - Only state of the played arm is observed
An application of restless bandit problem

Opportunistic spectrum access or cognitive radio

[Diagram of restless bandit problem with multiple channels and transitions between good and bad states.]
Regret for restless bandit problem

- Maximize \(\mathbb{E} \left[\sum_{t=1}^{n} X_{A_t}(t) \right] \) over horizon \(n \)?
- Optimal policy when \(P_i \)'s are known? non-stationary, intractable
- Minimize the following regret?

\[
R(n) = \mathbb{E} \left[\sum_{t=1}^{n} X_{A^*_t}(t) \right] - \mathbb{E} \left[\sum_{t=1}^{n} X_{A_t}(t) \right]
\]

Too ambitious!
Regret for restless bandit problem

- Maximize $\mathbb{E} \left[\sum_{t=1}^{n} X_{A_t}(t) \bigg| x_0 \right]$ over horizon n?
- Optimal policy when P_is are known? **non-stationary, intractable**
- Minimize the following regret?

$$R(n) = \mathbb{E} \left[\sum_{t=1}^{n} X_{A_t^*}(t) \bigg| x_0 \right] - \mathbb{E} \left[\sum_{t=1}^{n} X_{A_t}(t) \bigg| x_0 \right]$$

too ambitious!
Regret for restless bandit problem

- Maximize $\mathbb{E} \left[\sum_{t=1}^{n} X_{A_t}(t) \bigg| x_0 \right]$ over horizon n?
- Optimal policy when P_is are known? **non-stationary, intractable**
- Minimize the following regret?

$$R(n) = \mathbb{E} \left[\sum_{t=1}^{n} X_{A^*_t}(t) \bigg| x_0 \right] - \mathbb{E} \left[\sum_{t=1}^{n} X_{A_t}(t) \bigg| x_0 \right]$$

Too ambitious!
Regret for restless bandit problem

- Maximize $\mathbb{E} \left[\sum_{t=1}^{n} X_{A_t}(t) \mid x_0 \right]$ over horizon n?
- Optimal policy when P_is are known? **non-stationary, intractable**
- Minimize the following regret?

$$R(n) = \mathbb{E} \left[\sum_{t=1}^{n} X_{A_t^*}(t) \mid x_0 \right] - \mathbb{E} \left[\sum_{t=1}^{n} X_{A_t}(t) \mid x_0 \right]$$

Too ambitious!
Alternative regret for restless bandit problem

- Recall that for i.i.d. and rested bandits our “weak” benchmark was $n\mu_1$.
- We seek to minimize the weak regret:

 $$R_w(n) = n\mu_1 - \mathbb{E}\left[\sum_{t=1}^{n} X_{A_t}(t) \mid x_0\right]$$

Why?
- Tradeoff between performance and complexity
- Scalability for compute and memory constrained, battery dependent devices
- In line with satisficing principle of Herbert Simon
 “Decision makers can satisfice either by finding optimum solutions for a simplified world or by satisfactory solutions for a more realistic world”
Alternative regret for restless bandit problem

- Recall that for i.i.d. and rested bandits our “weak” benchmark was $n\mu_1$.
- We seek to minimize the weak regret:

$$R_w(n) = n\mu_1 - \mathbb{E} \left[\sum_{t=1}^{n} X_{A_t}(t) \bigg| x_0 \right]$$

Why?

- Tradeoff between performance and complexity
- Scalability for compute and memory constrained, battery dependent devices
- In line with satisficing principle of Herbert Simon

 “Decision makers can satisfice either by finding optimum solutions for a simplified world or by satisfactory solutions for a more realistic world”
A connection between rested and restless bandits

- Let $\tau_i(m)$ represent the time index of mth play of arm i
- For a rested arm $\hat{\mu}_i(t) = \frac{X_i(\tau_i(1)) + \ldots + X_i(\tau_i(t))}{T_i(t)} \to \mu_i$
- For a restless arm $\hat{\mu}_i(t) \not\to \mu_i$ since $X_i(\tau_i(1)), \ldots, X_i(\tau_i(t))$ do not form a continuous sample path for “active” Markov chain of arm i

Design an algorithm that stitches together discontinuous segments of observations from a restless arm to form a rested arm with the same P_i as the restless arm
The regenerative cycle algorithm (RCA) [Tekin & Liu, 2012]

- An arm is played in blocks till a full regenerative cycle is observed (starting in some state γ_i and ending in γ_i).
- Since arm selections are interleaved, observations from an arm are carefully stitched together to mimic a rested arm.
 - Block $B = [SB1, SB2, SB3]$
 - $SB1$: Play till γ_i is hit
 - $SB2, SB3$: Play till γ_i is hit again

```
\begin{align*}
\cdots & \gamma_i \cdots 1 \gamma_i \cdots j \cdots \gamma_i \cdots 2 \gamma_i \cdots \\
SB1 & \quad SB2 & \quad SB3 & \quad SB1 & \quad SB2 & \quad SB3 & \quad SB2 & \quad SB3
\end{align*}
```

- \[\cdots \text{play } i \cdots \text{play } j \cdots \text{play } i \cdots \]

- \[\cdots \cdots \cdots \cdots \gamma_i^* \gamma_i^* \gamma_i^* \gamma_i^* \gamma_i^* \cdots \cdots \cdots \cdots \]

- \[\cdots \cdots \cdots \cdots \gamma_i \cdots 3 \gamma_i \cdots \cdots \cdots \cdots \]

- \[\cdots \cdots \cdots \cdots \text{SB1} \quad \text{SB2} & \quad \text{SB3} \]

C. Tekin
OL in Rested and Restless Bandits
November 20, 2023
The regenerative cycle algorithm (RCA)

When we stitch together SB2s of arm i:

A continuous sample path from P_i (rested UCB analysis apply)

Moreover, blocks are i.i.d. by the regenerative cycle theorem [Brémaud Thm. 7.4.]
Algorithm 5: RCA-i.i.d.

At the end of bth block:
1. Compute UCB indices: $UCB_i(b+1) = \frac{Y_{i,2}(b)}{N_{i,2}(b)} + \sqrt{\frac{\alpha \log b}{B_i(b)}}$
2. Play arm $A_{b+1} = \arg \max_{i \in [k]} UCB_i(b+1)$

- $B_i(b)$: number of completed blocks of arm i so far
- $N_{i,2}(b)$: number of rounds spent in SB2 of arm i so far
- $Y_{i,2}(b)$: cumulative reward from SB2 of arm i so far

$$i = \arg \max_{a \in [k]} UCB_a(b+1)$$
RCA based on i.i.d. property of the regenerative cycles

Theorem

When $0 < x < 1$ for all $x \in S_i$ and $\alpha = 2$, the weak regret of RCA is

$$R_w(n) = O \left(\sum_{i: \mu_i < \mu_1} \frac{\log n}{(\mu_1 - \mu_i)^2} \left[\underbrace{(\mu_1 - \mu_i)}_{A} \mathbb{E}_{\gamma_i}[SB2] + \underbrace{\mathbb{E}_{worst}[SB1]}_{C} \right] \right)$$

- A: Number of blocks (up to n) where suboptimal arm i selected
- B: Expected regret in regenerative cycle of arm i is block
- C: Expected regret from SB1 before hitting γ_i in arm i is block

Plug-in your favorite i.i.d. bandit algorithm. RCA should work.
RCA based on continuous sample path property

- γ_i can be updated online to form the longest continuous sample path from arm i
 - SB2s of arm i are no longer i.i.d.
 - Rested analysis over SB2s still apply

Use cases:
- Arrange γ_is to minimize “wasted” observations in SB1s
- Can update indices when the task assigned to the arm completes
- For rested-based analysis, UCB **exploration constant** α requires knowledge of minimum eigenvalue gap (an instance-dependent quantity)
 - Grow α slowly over time $\alpha(n) \to \infty$
- Play M arms each time
 - At each round arms with highest M indices are played
- Rested bandits: analysis straightforwardly extends
- Restless bandits: need to account for random block lengths
For rested-based analysis, UCB exploration constant α requires knowledge of minimum eigenvalue gap (an instance-dependent quantity)
 - Grow α slowly over time $\alpha(n) \to \infty$

Play M arms each time
 - At each round arms with highest M indices are played
 - Rested bandits: analysis straightforwardly extends
 - Restless bandits: need to account for random block lengths
Other approaches for log weak regret in restless bandits

- Deterministic sequencing of exploration and exploitation (DSEE) [Liu et al. 2013]
 - Exploration & exploitation blocks are separate
 - All arms explored same amount of time
 - Geometrically increasing block lengths to wash away transient effects
 \[R_W(n) = O \left(\frac{\log n}{\epsilon_{\text{min}}(\mu_1 - \mu_2)^2} \right) \]

- Adaptive sequencing rule (ASR) [Gafni & Cohen, 2021]
 - Exploration & exploitation blocks are separate
 - Geometrically increasing block lengths to wash away transient effects
 - Tries to explore arm \(i \) about \(O \left(\frac{\log n}{(\mu_1 - \mu_i)^2} \right) \) times by estimating the gap
 - Uses RCA within exploration blocks to form accurate estimates of arm means
 \[R_W(n) = O \left(\frac{\log n}{\epsilon_{\text{min}}(\mu_1 - \mu_2)} \right) \] with tuned parameters
Other approaches for log weak regret in restless bandits

- Deterministic sequencing of exploration and exploitation (DSEE) [Liu et al. 2013]
 - Exploration & exploitation blocks are separate
 - All arms explored same amount of time
 - Geometrically increasing block lengths to wash away transient effects
 - \(R_W(n) = O \left(\frac{\log n}{\epsilon_{\text{min}}(\mu_1 - \mu_2)^2} \right) \)

- Adaptive sequencing rule (ASR) [Gafni & Cohen, 2021]
 - Exploration & exploitation blocks are separate
 - Geometrically increasing block lengths to wash away transient effects
 - Tries to explore arm \(i \) about \(O(\frac{\log n}{(\mu_1 - \mu_i)^2}) \) times by estimating the gap
 - Uses RCA within exploration blocks to form accurate estimates of arm means
 - \(R_W(n) = O \left(\frac{\log n}{\epsilon_{\text{min}}(\mu_1 - \mu_2)} \right) \) with tuned parameters
Learning policies that compete with Whittle index?

A recent preprint by [Akbarzadeh & Mahajan, 2023]²

- Undiscounted $\beta = 1$
- Uncontrolled transitions according to P_i independent of active or passive
- Bayesian strong regret bound of $\tilde{O}(KS_{\max}\sqrt{n})$

² On learning Whittle index policy for restless bandits with scalable regret
Research directions

- Understanding dependence of instance-dependent weak regret on S_{max}
- Improving gap-dependence of weak regret in restless bandits
- Frequentist analysis w.r.t. other benchmarks (e.g., Gittins, Whittle)

THANK YOU!
Research directions

- Understanding dependence of instance-dependent weak regret on S_{max}
- Improving gap-dependence of weak regret in restless bandits
- Frequentist analysis w.r.t. other benchmarks (e.g., Gittins, Whittle)

THANK YOU!