Online Learning in Rested and Restless Bandits Workshop on restless bandits, index policies and applications in reinforcement learning

Cem Tekin

Bilkent University

November 20, 2023

November 20, 2023

3

Image: A image: A

Background

- I worked on rested and restless bandits during my PhD (2008-2013)
 - U Michigan
 - Demos Teneketsiz, Mingyan Liu, Ambuj Tewari..
- The talk is mainly about my PhD work:
 - C. Tekin, M. Liu, "Online learning in rested and restless bandits", IEEE Trans. Inf. Theory, 2012.
- Remarkable progress in the field since then

イロト 不得 トイヨト イヨト ニヨー

k-armed i.i.d. bandit problem

• k arms with fixed and unknown reward distributions (frequentist setting)

 $\nu = \nu_1 \times \nu_2 \times \ldots \times \nu_k$

• Unknown expected arm rewards:

 $\mu_1 \geq \mu_2 \geq \ldots \geq \mu_k$

- *n* rounds of sequential interaction. At round *t*:
 - Learner plays arm $A_t \in [k]$
 - Learner observes noisy reward $X_{A_t}(t) \sim \nu_{A_t}$

<□ ▶ < @ ▶ < E ▶ < E ▶ E のQ @ 3/26

Regret for i.i.d. bandit problem

• Goal: For a given horizon n

Maximize
$$\mathbb{E}\left[\sum_{t=1}^n X_{\mathcal{A}_t}(t)\right]$$

• Optimal policy when μ_1, \ldots, μ_k are known:

Always choose arm 1

• Minimize frequentist regret:

$$R(n) = n\mu_1 - \mathbb{E}\left[\sum_{t=1}^n X_{A_t}(t)\right]$$

OL in Rested and Restless Bandits

November 20, 2023

UCB algorithm for i.i.d. bandit [Auer et al. 2002]

 Any meaningful policy samples suboptimal arm i Ω(log n) times [Lai & Robbins, 1985]

Algorithm 1: UCB

for t = 1, 2, ... do

1. Compute UCB indices: UCB $_i(t) = \hat{\mu}_i(t) + \sqrt{rac{lpha \log(t-1)}{T_i(t)}}$

2. Play arm
$$A_t = \arg \max_{i \in [k]} UCB_i(t)$$

end

 α : exploration constant; $T_i(t)$: number of plays of arm *i* before *t*; $\hat{\mu}_i(t)$: sample mean reward of arm *i*

Properties of UCB:

- Achieves $O(\log n)$ instance-dependent regret (order-optimal)
- Anytime (no need to know n)
- Compute & memory efficient

C. Tekin

OL in Rested and Restless Bandits

November 20, 2023

UCB algorithm for i.i.d. bandit [Auer et al. 2002]

 Any meaningful policy samples suboptimal arm i Ω(log n) times [Lai & Robbins, 1985]

Algorithm 2: UCB

for t = 1, 2, ... do

1. Compute UCB indices: UCB_i(t) = $\hat{\mu}_i(t) + \sqrt{\frac{\alpha \log(t-1)}{T_i(t)}}$

2. Play arm
$$A_t = \arg \max_{i \in [k]} UCB_i(t)$$

end

 α : exploration constant; $T_i(t)$: number of plays of arm i before t; $\hat{\mu}_i(t)$: sample mean reward of arm i

Properties of UCB:

- Achieves $O(\log n)$ instance-dependent regret (order-optimal)
- Anytime (no need to know n)
- Compute & memory efficient

C. Tekin

OL in Rested and Restless Bandits

November 20, 2023

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

UCB algorithm for i.i.d. bandit [Auer et al. 2002]

Any meaningful policy samples suboptimal arm *i* Ω(log *n*) times [Lai & Robbins, 1985]

Algorithm 3: UCB

for t = 1, 2, ... do

1. Compute UCB indices: UCB_i(t) = $\hat{\mu}_i(t) + \sqrt{\frac{\alpha \log(t-1)}{T_i(t)}}$

2. Play arm
$$A_t = \arg \max_{i \in [k]} UCB_i(t)$$

end

 α : exploration constant; $T_i(t)$: number of plays of arm *i* before *t*; $\hat{\mu}_i(t)$: sample mean reward of arm *i*

Properties of UCB:

- Achieves $O(\log n)$ instance-dependent regret (order-optimal)
- Anytime (no need to know n)
- Compute & memory efficient

C. Tekin

OL in Rested and Restless Bandits

November 20, 2023

<□▶ < □▶ < □▶ < □▶ < □▶ < □▶ < □> ○ ○ ○ 5/26

Arm *i*:

- Finite state space S_i
- Reward = state (noiseless observations)
- When not played, state remains frozen
- When played, state transitions according to **unknown** P_i
- When played, an irreducible, aperiodic Markov chain

• Maximize $\mathbb{E}\left[\sum_{t=1}^{n} X_{A_t}(t) \middle| \mathbf{x}_0 \right]$ over horizon *n*?

Optimal policy when P_is are known? non-stationary, intractable
Minimize the following regret?

$$R(n) = \underbrace{\mathbb{E}\left[\sum_{t=1}^{n} X_{A_{t}^{*}}(t) \middle| \mathbf{x}_{0}\right]}_{\text{optimal policy}} - \underbrace{\mathbb{E}\left[\sum_{t=1}^{n} X_{A_{t}}(t) \middle| \mathbf{x}_{0}\right]}_{\text{learner's policy}}$$

Too ambitious!

OL in Rested and Restless Bandits

November 20, 2023

- Maximize $\mathbb{E}\left[\sum_{t=1}^{n} X_{A_t}(t) \middle| \mathbf{x}_0 \right]$ over horizon *n*?
- Optimal policy when P_is are known? non-stationary, intractable
 Minimize the following regret?

$$R(n) = \underbrace{\mathbb{E}\left[\sum_{t=1}^{n} X_{A_{t}^{*}}(t) \middle| \mathbf{x}_{0}\right]}_{\text{optimal policy}} - \underbrace{\mathbb{E}\left[\sum_{t=1}^{n} X_{A_{t}}(t) \middle| \mathbf{x}_{0}\right]}_{\text{learner's policy}}$$

Too ambitious!

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへで 7/26

- Maximize $\mathbb{E}\left[\sum_{t=1}^{n} X_{A_t}(t) | \mathbf{x}_0\right]$ over horizon *n*?
- Optimal policy when *P*_is are known? **non-stationary, intractable**
- Minimize the following regret?

$$R(n) = \underbrace{\mathbb{E}\left[\sum_{t=1}^{n} X_{A_{t}^{*}}(t) \middle| \mathbf{x}_{0}\right]}_{\text{optimal policy}} - \underbrace{\mathbb{E}\left[\sum_{t=1}^{n} X_{A_{t}}(t) \middle| \mathbf{x}_{0}\right]}_{\text{learner's policy}}$$

Too ambitious!

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへで 7/26

- Maximize $\mathbb{E}\left[\sum_{t=1}^{n} X_{A_t}(t) | \mathbf{x}_0\right]$ over horizon *n*?
- Optimal policy when *P*_is are known? **non-stationary, intractable**
- Minimize the following regret?

$$R(n) = \underbrace{\mathbb{E}\left[\sum_{t=1}^{n} X_{A_{t}^{*}}(t) \middle| \mathbf{x}_{0}\right]}_{\text{optimal policy}} - \underbrace{\mathbb{E}\left[\sum_{t=1}^{n} X_{A_{t}}(t) \middle| \mathbf{x}_{0}\right]}_{\text{learner's policy}}$$

Too ambitious!

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへで 7/26

Let's try something else

- For $0 < \beta < 1$, Maximize $\mathbb{E}\left[\sum_{t=1}^{\infty} \beta^{t-1} X_{A_t}(t) \middle| \mathbf{x}_0 \right]$?
- Optimal policy when P₁,..., P_k are known? Gittins index policy
 Minimize the following regret?

$$R(n) = \underbrace{\mathbb{E}\left[\sum_{t=1}^{n} \beta^{t-1} X_{A_{t}^{*}}(t) \middle| \mathbf{x}_{0}\right]}_{\text{Gittins index policy}} - \underbrace{\mathbb{E}\left[\sum_{t=1}^{n} \beta^{t-1} X_{A_{t}}(t) \middle| \mathbf{x}_{0}\right]}_{\text{learner's policy}}$$

Not enough time to learn!

Let's try something else

- For $0 < \beta < 1$, Maximize $\mathbb{E}\left[\sum_{t=1}^{\infty} \beta^{t-1} X_{A_t}(t) | \mathbf{x}_0\right]$?
- Optimal policy when P_1, \ldots, P_k are known? **Gittins index policy**

• Minimize the following regret?

$$R(n) = \underbrace{\mathbb{E}\left[\sum_{t=1}^{n} \beta^{t-1} X_{A_{t}^{*}}(t) \middle| \mathbf{x}_{0}\right]}_{\text{Gittins index policy}} - \underbrace{\mathbb{E}\left[\sum_{t=1}^{n} \beta^{t-1} X_{A_{t}}(t) \middle| \mathbf{x}_{0}\right]}_{\text{learner's policy}}$$

Not enough time to learn!

Let's try something else

- For $0 < \beta < 1$, Maximize $\mathbb{E}\left[\sum_{t=1}^{\infty} \beta^{t-1} X_{A_t}(t) | \mathbf{x}_0\right]$?
- Optimal policy when P_1, \ldots, P_k are known? Gittins index policy
- Minimize the following regret?

$$R(n) = \underbrace{\mathbb{E}\left[\sum_{t=1}^{n} \beta^{t-1} X_{A_{t}^{*}}(t) \middle| \mathbf{x}_{0}\right]}_{\text{Gittins index policy}} - \underbrace{\mathbb{E}\left[\sum_{t=1}^{n} \beta^{t-1} X_{A_{t}}(t) \middle| \mathbf{x}_{0}\right]}_{\text{learner's policy}}$$

Not enough time to learn!

Let's try something else

- For $0 < \beta < 1$, Maximize $\mathbb{E}\left[\sum_{t=1}^{\infty} \beta^{t-1} X_{A_t}(t) | \mathbf{x}_0\right]$?
- Optimal policy when P_1, \ldots, P_k are known? Gittins index policy
- Minimize the following regret?

$$R(n) = \underbrace{\mathbb{E}\left[\sum_{t=1}^{n} \beta^{t-1} X_{A_{t}^{*}}(t) \middle| \mathbf{x}_{0}\right]}_{\text{Gittins index policy}} - \underbrace{\mathbb{E}\left[\sum_{t=1}^{n} \beta^{t-1} X_{A_{t}}(t) \middle| \mathbf{x}_{0}\right]}_{\text{learner's policy}}$$

Not enough time to learn!

Weak regret for rested bandit problem

Let's try something simpler

• Let $\{\pi_i(x)\}_{x \in S_i}$ represent the unique stationary distribution of arm i

$$\mu_i := \lim_{n \to \infty} \frac{1}{n} \mathbb{E} \left[\sum_{t=1}^n X_i(t) \middle| x_0 \right] = \sum_{x \in S_i} x \pi_i(x)$$

- Assume $\mu_1 \ge \mu_2 \ge \ldots \ge \mu_k$
- Optimal policy when P₁,..., P_k are known? Since arms are rested and ergodic, as n → ∞, for the optimal policy A^{*}_t = 1 for t large.
- Minimize the weak regret

$$R_{w}(n) = \underbrace{n\mu_{1}}_{\text{proxy for the opt}} - \underbrace{\mathbb{E}\left[\sum_{t=1}^{n} X_{A_{t}}(t) \middle| \mathbf{x}_{0}\right]}_{\text{learner's policy}}$$

OL in Rested and Restless Bandits

November 20, 2023

Weak regret for rested bandit problem

Let's try something simpler

• Let $\{\pi_i(x)\}_{x \in S_i}$ represent the unique stationary distribution of arm i

$$\mu_i := \lim_{n \to \infty} \frac{1}{n} \mathbb{E} \left[\sum_{t=1}^n X_i(t) \middle| x_0 \right] = \sum_{x \in S_i} x \pi_i(x)$$

• Assume
$$\mu_1 \geq \mu_2 \geq \ldots \geq \mu_k$$

Optimal policy when P₁,..., P_k are known? Since arms are rested and ergodic, as n→∞, for the optimal policy A^{*}_t = 1 for t large.

• Minimize the weak regret

$$R_{w}(n) = \underbrace{n\mu_{1}}_{\text{proxy for the opt}} - \underbrace{\mathbb{E}\left[\sum_{t=1}^{n} X_{A_{t}}(t) \middle| \mathbf{x}_{0}\right]}_{\text{learner's policy}}$$

OL in Rested and Restless Bandits

November 20, 2023

Weak regret for rested bandit problem

Let's try something simpler

• Let $\{\pi_i(x)\}_{x \in S_i}$ represent the unique stationary distribution of arm i

$$\mu_i := \lim_{n \to \infty} \frac{1}{n} \mathbb{E} \left[\sum_{t=1}^n X_i(t) \middle| x_0 \right] = \sum_{x \in S_i} x \pi_i(x)$$

• Assume
$$\mu_1 \geq \mu_2 \geq \ldots \geq \mu_k$$

- Optimal policy when P₁,..., P_k are known? Since arms are rested and ergodic, as n→∞, for the optimal policy A^{*}_t = 1 for t large.
- Minimize the weak regret

C. Tekin

UCB for rested bandit problem [Tekin & Liu, 2012]

Algorithm 4: UCB-rested

for $t = 1, 2, \ldots$ do

1. Compute UCB indices:
$$UCB_i(t) = \hat{\mu}_i(t) + \sqrt{\frac{\alpha \log(t-1)}{T_i(t)}}$$

2. Play arm $A_t = \arg \max_{i \in [k]} UCB_i(t)$

end

 α : exploration constant; $T_i(t)$: number of plays of arm *i* before *t*; $\hat{\mu}_i(t)$: sample mean reward of arm *i*

Difference from i.i.d. UCB?

Choice of α that yields $O(\log n)$ instance-dependent regret depends on state space cardinality and eigenvalue gap of transition matrices.

Conditions for the regret bound:

- All arms are finite-state, irreducible, aperiodic Markov chains with *P*_is having irreducible multiplicative symmetrizations (MS)
- For any state x of any arm, 0 < x < 1
- ϵ_i : eigenvalue gap of MS of P_i
- $\epsilon_{\min} = \min_i \epsilon_i$
- $S_{\max} = \max_{i \in [k]} |S_i|$

Theorem

When UCB is run with $\alpha = O(S_{max}^2/\varepsilon_{min})$, we have

$$R_w(n) = O\left(\frac{S_{\max}^2}{\epsilon_{\min}} \sum_{i: \mu_i < \mu_1} \frac{\log n}{\mu_1 - \mu_i}\right)$$

OL in Rested and Restless Bandits

November 20, 2023

Learning policies that compete with Gittins index?

A recent paper by [Gast et al. 2022]¹

- Discount factor eta < 1
- Episodic setting with *n* episodes and geometrically distributed episode lengths
- Computationally tractable algorithms with Bayesian strong regret bound of $O(S_{\max}\sqrt{nK})$

Learning algorithms for Markovian bandits: Is posterior sampling more scalable thai optimism?, TMLR, 2022 🛛 🚊 🔗

Arm *i*:

- All assumptions same as rested **except**:
 - When not played, state transitions arbitrarily
 - Only state of the played arm is observed

OL in Rested and Restless Bandits

November 20, 2023

An application of restless bandit problem

Opportunistic spectrum access or cognitive radio

November 20, 2023

ъ

э

< ∃ →

C. Tekin

• Maximize $\mathbb{E}\left[\sum_{t=1}^{n} X_{A_t}(t) \middle| \mathbf{x}_0 \right]$ over horizon *n*?

Optimal policy when P_is are known? non-stationary, intractable
Minimize the following regret?

$$R(n) = \underbrace{\mathbb{E}\left[\sum_{t=1}^{n} X_{A_{t}^{*}}(t) \middle| \mathbf{x}_{0}\right]}_{\text{optimal policy}} - \underbrace{\mathbb{E}\left[\sum_{t=1}^{n} X_{A_{t}}(t) \middle| \mathbf{x}_{0}\right]}_{\text{learner's policy}}$$

Too ambitious!

OL in Rested and Restless Bandits

November 20, 2023

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

- Maximize $\mathbb{E}\left[\sum_{t=1}^{n} X_{A_t}(t) | \mathbf{x}_0\right]$ over horizon *n*?
- Optimal policy when P_is are known? non-stationary, intractable
 Minimize the following regret?

$$R(n) = \underbrace{\mathbb{E}\left[\sum_{t=1}^{n} X_{A_{t}^{*}}(t) \middle| \mathbf{x}_{0}\right]}_{\text{optimal policy}} - \underbrace{\mathbb{E}\left[\sum_{t=1}^{n} X_{A_{t}}(t) \middle| \mathbf{x}_{0}\right]}_{\text{learner's policy}}$$

Too ambitious!

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のくぐ

- Maximize $\mathbb{E}\left[\sum_{t=1}^{n} X_{A_t}(t) \middle| \mathbf{x}_0 \right]$ over horizon *n*?
- Optimal policy when *P*_is are known? **non-stationary, intractable**
- Minimize the following regret?

$$R(n) = \underbrace{\mathbb{E}\left[\sum_{t=1}^{n} X_{A_{t}^{*}}(t) \middle| \mathbf{x}_{0}\right]}_{\text{optimal policy}} - \underbrace{\mathbb{E}\left[\sum_{t=1}^{n} X_{A_{t}}(t) \middle| \mathbf{x}_{0}\right]}_{\text{learner's policy}}$$

Too ambitious!

OL in Rested and Restless Bandits

November 20, 2023

▲ロ ▶ ▲圖 ▶ ▲ 圖 ▶ ▲ 圖 ▶ ● ⑨ � () ●

- Maximize $\mathbb{E}\left[\sum_{t=1}^{n} X_{A_t}(t) | \mathbf{x}_0\right]$ over horizon *n*?
- Optimal policy when *P*_is are known? **non-stationary, intractable**
- Minimize the following regret?

$$R(n) = \underbrace{\mathbb{E}\left[\sum_{t=1}^{n} X_{A_{t}^{*}}(t) \middle| \mathbf{x}_{0}\right]}_{\text{optimal policy}} - \underbrace{\mathbb{E}\left[\sum_{t=1}^{n} X_{A_{t}}(t) \middle| \mathbf{x}_{0}\right]}_{\text{learner's policy}}$$

Too ambitious!

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のへで

- Recall that for i.i.d. and rested bandits our "weak" benchmark was $n\mu_1$.
- We seek to minimize the weak regret:

$$R_w(n) = n\mu_1 - \mathbb{E}\left[\sum_{t=1}^n X_{\mathcal{A}_t}(t) \Big| \mathbf{x}_0\right]$$

Why?

- Tradeoff between performance and complexity
- Scalability for compute and memory constrained, battery dependent devices
- In line with satisficing principle of Herbert Simon

"Decision makers can satisfice either by finding optimum solutions for a simplified world or by satisfactory solutions for a more realistic world"

OL in Rested and Restless Bandits

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

- Recall that for i.i.d. and rested bandits our "weak" benchmark was $n\mu_1$.
- We seek to minimize the weak regret:

$$R_w(n) = n\mu_1 - \mathbb{E}\left[\sum_{t=1}^n X_{\mathcal{A}_t}(t) \Big| \mathbf{x}_0\right]$$

Why?

- Tradeoff between performance and complexity
- Scalability for compute and memory constrained, battery dependent devices
- In line with satisficing principle of Herbert Simon

"Decision makers can satisfice either by finding optimum solutions for a simplified world or by satisfactory solutions for a more realistic world"

A connection between rested and restless bandits

- Let $\tau_i(m)$ represent the time index of *m*th play of arm *i*
- For a rested arm $\hat{\mu}_i(t) = \frac{X_i(\tau_i(1)) + \dots + X_i(\tau_i(t))}{T_i(t)} \rightarrow \mu_i$
- For a restless arm $\hat{\mu}_i(t) \nleftrightarrow \mu_i$ since $X_i(\tau_i(1)), \ldots, X_i(\tau_i(t))$ do not form a continuous sample path for "active" Markov chain of arm *i*

Design an algorithm that stitches together discontinuous segments of observations from a restless arm to form a rested arm with the same P_i as the restless arm

The regenerative cycle algorithm (RCA) [Tekin & Liu, 2012]

- An arm is played in blocks till a full regenerative cycle is observed (starting in some state γ_i and ending in γ_i
- Since arm selections are interleaved, observations from an arm are carefully stitched together to mimic a rested arm
 - Block B = [SB1, SB2, SB3]
 - SB1: Play till γ_i is hit
 - SB2, SB3: Play till γ_i is hit again

OL in Rested and Restless Bandits

November 20, 2023

The regenerative cycle algorithm (RCA)

• When we stitch together SB2s of arm *i*:

$$\gamma_i \quad \cdots \quad \mathbf{1} \quad \gamma_i \cdots \mathbf{2} \quad \gamma_i \quad \cdot \mathbf{3} \quad \cdots$$

• A continuous sample path from P_i (rested UCB analysis apply)

 Moreover, blocks are i.i.d. by the regenerative cycle theorem [Brémaud Thm. 7.4.]

C. Tekin

November 20, 2023

RCA based on i.i.d. property of the regenerative cycles

Algorithm 5: RCA-i.i.d.

At the end of *b*th block:

1. Compute UCB indices: UCB_i $(b+1) = \frac{Y_{i,2}(b)}{N_{i,2}(b)} + \sqrt{\frac{\alpha \log b}{B_i(b)}}$

2. Play arm $A_{b+1} = \arg \max_{i \in [k]} UCB_i(b+1)$

- $B_i(b)$: number of completed blocks of arm *i* so far
- $N_{i,2}(b)$: number of rounds spent in SB2 of arm *i* so far
- $Y_{i,2}(b)$: cumulative reward from SB2 of arm *i* so far

RCA based on i.i.d. property of the regenerative cycles

Theorem

When 0 < x < 1 for all $x \in S_i$ and $\alpha = 2$, the weak regret of RCA is

$$R_w(n) = O\left(\sum_{i:\mu_i < \mu_1} \underbrace{\frac{\log n}{(\mu_1 - \mu_i)^2}}_{A} \left[\underbrace{(\mu_1 - \mu_i)\mathbb{E}_{\gamma_i}[SB2]}_{B} + \underbrace{\mathbb{E}_{worst}[SB1]}_{C}\right]\right)$$

- A: Number of blocks (up to n) where suboptimal arm i selected
- B: Expected regret in regenerative cycle of arm is block
- C: Expected regret from SB1 before hitting γ_i in arm *is* block Plug-in your favorite i.i.d. bandit algorithm. RCA should work.

3

RCA based on continuous sample path property

- γ_i can be updated online to form the longest continuous sample path from arm i
 - SB2s of arm *i* are no longer i.i.d.
 - Rested analysis over SB2s still apply

Use cases:

- Arrange γ_i s to minimize "wasted" observations in SB1s
- Can update indices when the task assigned to the arm completes

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Extensions

• For rested-based analysis, UCB **exploration constant** *α* requires knowledge of minimum eigenvalue gap (an instance-dependent quantity)

- Grow α slowly over time $\alpha(n) \rightarrow \infty$
- Play *M* arms each time

C. Tekin

- At each round arms with highest M indices are played
- Rested bandits: analysis straightforwardly extends
- Restless bandits: need to account for random block lengths

Extensions

- For rested-based analysis, UCB **exploration constant** *α* requires knowledge of minimum eigenvalue gap (an instance-dependent quantity)
 - Grow α slowly over time $\alpha(n) \rightarrow \infty$
- Play *M* arms each time
 - At each round arms with highest M indices are played
 - Rested bandits: analysis straightforwardly extends
 - Restless bandits: need to account for random block lengths

Other approaches for log weak regret in restless bandits

- Deterministic sequencing of exploration and exploitation (DSEE) [Liu et al. 2013]
 - Exploration & exploitation blocks are separate
 - All arms explored same amount of time
 - Geometrically increasing block lengths to wash away transient effects

•
$$R_W(n) = O\left(\frac{\log n}{\epsilon_{\min}(\mu_1 - \mu_2)^2}\right)$$

- Adaptive sequencing rule (ASR) [Gafni & Cohen, 2021]
 - Exploration & exploitation blocks are separate
 - Geometrically increasing block lengths to wash away transient effects
 - Tries to explore arm *i* about $O(\frac{\log n}{(\mu_1-\mu_i)^2})$ times by estimating the gap
 - Uses RCA within exploration blocks to form accurate estimates of arm means

•
$$R_W(n) = O\left(rac{\log n}{\epsilon_{\min}(\mu_1 - \mu_2)}
ight)$$
 with tuned parameters

Other approaches for log weak regret in restless bandits

- Deterministic sequencing of exploration and exploitation (DSEE) [Liu et al. 2013]
 - Exploration & exploitation blocks are separate
 - All arms explored same amount of time
 - Geometrically increasing block lengths to wash away transient effects

•
$$R_W(n) = O\left(\frac{\log n}{\epsilon_{\min}(\mu_1 - \mu_2)^2}\right)$$

- Adaptive sequencing rule (ASR) [Gafni & Cohen, 2021]
 - Exploration & exploitation blocks are separate
 - Geometrically increasing block lengths to wash away transient effects
 - Tries to explore arm *i* about $O(\frac{\log n}{(\mu_1-\mu_i)^2})$ times by estimating the gap
 - Uses RCA within exploration blocks to form accurate estimates of arm means

•
$$R_W(n) = O\left(rac{\log n}{\epsilon_{\min}(\mu_1 - \mu_2)}
ight)$$
 with tuned parameters

▲□▶ ▲□▶ ▲□▶ ▲□▶ □□ - のへで

Learning policies that compete with Whittle index?

A recent preprint by [Akbarzadeh & Mahajan, 2023]²

- Undiscounted $\beta = 1$
- Uncontrolled transitions according to P_i independent of active or passive
- Bayesian strong regret bound of $\tilde{O}(KS_{\max}\sqrt{n})$

3

ヨト・イヨト

²On learning Whittle index policy for restless bandits with scalable regret

Research directions

- Understanding dependence of instance-dependent weak regret on S_{\max}
- Improving gap-dependence of weak regret in restless bandits
- Frequentist analysis w.r.t. other benchmarks (e.g., Gittins, Whittle)

THANK YOU!

э

イロト 不得 トイヨト イヨト

Research directions

- Understanding dependence of instance-dependent weak regret on S_{\max}
- Improving gap-dependence of weak regret in restless bandits
- Frequentist analysis w.r.t. other benchmarks (e.g., Gittins, Whittle)

THANK YOU!

4 D b 4 A

3

A B M A B M